Embryoid body-based differentiation of human-induced pluripotent stem cells into cells with a corneal stromal keratocyte phenotype.

IF 2 Q2 OPHTHALMOLOGY
Jie Chen, Qingjian Ou, Yifan Liu, Tingting Cui, Huimin Yang, Jiancen Tang, Lixia Lu, Guotong Xu, Hongping Cui, Caixia Jin, Qian Li
{"title":"Embryoid body-based differentiation of human-induced pluripotent stem cells into cells with a corneal stromal keratocyte phenotype.","authors":"Jie Chen, Qingjian Ou, Yifan Liu, Tingting Cui, Huimin Yang, Jiancen Tang, Lixia Lu, Guotong Xu, Hongping Cui, Caixia Jin, Qian Li","doi":"10.1136/bmjophth-2024-001828","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The transparency of the cornea is determined by the extracellular matrix, which is secreted by corneal stromal keratocytes (CSKs). Human-induced pluripotent stem cell (hiPSC)-derived keratocytes (hiPSC-CSKs) can be used in cell-based therapy for treating corneal blindness. Our goal was to develop an effective small molecule-based technique for differentiating hiPSCs into keratocytes.</p><p><strong>Methods and analysis: </strong>hiPSCs were cultured in chemically defined medium, and embryoid bodies (EBs) were generated; these EBs were induced into CSKs using keratocyte-differentiated medium. The expression of keratocyte-specific markers was assessed using quantitative RT-PCR, immunostaining and Western blotting.</p><p><strong>Results: </strong>We found that the expression of genes encoding keratocyte markers, including aldehyde dehydrogenase 1 family member A1 (ALDH1A1), lumican and keratocan, was upregulated. Immunostaining showed positive staining for ALDH1A1 and keratocan in the hiPSC-CSK samples. Similarly, western blot analysis indicated that ALDH1A1 and keratocan expression levels were significantly greater in the hiPSC-CSKs than in the control cells. In addition, hiPSC-CSKs were not transformed into fibroblasts or myofibroblasts.</p><p><strong>Conclusion: </strong>We established an innovative and effective method to generate CSKs via the EB-based differentiation of hiPSCs, which might be employed for cell-based therapy of corneal stromal opacities.</p>","PeriodicalId":9286,"journal":{"name":"BMJ Open Ophthalmology","volume":"9 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjophth-2024-001828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The transparency of the cornea is determined by the extracellular matrix, which is secreted by corneal stromal keratocytes (CSKs). Human-induced pluripotent stem cell (hiPSC)-derived keratocytes (hiPSC-CSKs) can be used in cell-based therapy for treating corneal blindness. Our goal was to develop an effective small molecule-based technique for differentiating hiPSCs into keratocytes.

Methods and analysis: hiPSCs were cultured in chemically defined medium, and embryoid bodies (EBs) were generated; these EBs were induced into CSKs using keratocyte-differentiated medium. The expression of keratocyte-specific markers was assessed using quantitative RT-PCR, immunostaining and Western blotting.

Results: We found that the expression of genes encoding keratocyte markers, including aldehyde dehydrogenase 1 family member A1 (ALDH1A1), lumican and keratocan, was upregulated. Immunostaining showed positive staining for ALDH1A1 and keratocan in the hiPSC-CSK samples. Similarly, western blot analysis indicated that ALDH1A1 and keratocan expression levels were significantly greater in the hiPSC-CSKs than in the control cells. In addition, hiPSC-CSKs were not transformed into fibroblasts or myofibroblasts.

Conclusion: We established an innovative and effective method to generate CSKs via the EB-based differentiation of hiPSCs, which might be employed for cell-based therapy of corneal stromal opacities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMJ Open Ophthalmology
BMJ Open Ophthalmology OPHTHALMOLOGY-
CiteScore
3.40
自引率
4.20%
发文量
104
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信