CBX7 inhibitors affect H3K9 methyltransferase-regulated gene repression in leukemic cells.

IF 2.5 4区 医学 Q2 HEMATOLOGY
Anne P de Groot, Huong Nguyen, Jacobine S Pouw, Ellen Weersing, Albertina Dethmers-Ausema, Gerald de Haan
{"title":"CBX7 inhibitors affect H3K9 methyltransferase-regulated gene repression in leukemic cells.","authors":"Anne P de Groot, Huong Nguyen, Jacobine S Pouw, Ellen Weersing, Albertina Dethmers-Ausema, Gerald de Haan","doi":"10.1016/j.exphem.2024.104691","DOIUrl":null,"url":null,"abstract":"<p><p>The epigenome of leukemic cells is dysregulated, and genes required for cell cycle arrest and differentiation may become repressed, which contributes to the accumulation of undifferentiated malignant blood cells. Here we show that the Polycomb group protein CBX7 can interact with H3K9 methyltransferases EHMT1/2 and SETDB1. We aimed to assess whether combined interfering with these H3K9 methyltransferases and CBX7 could derepress target genes and thereby induce growth arrest of leukemic cells. We found that pharmacological inhibition of CBX7 abolishes the interaction of CBX7 with EHMT1/2 and SETDB1 and, subsequently, reduces H3K9 methylation levels which reactivates target gene expression. Reversely, upon pharmacological inhibition of H3K9 methyltransferases, CBX7 can take over gene repression. Finally, we found that combined inhibition of CBX7 and EHMT1/2 or SETDB1 had additive effects on reducing cell growth and inducing differentiation. However, we did not detect changes in epigenetic modifications, nor target gene derepression, after combination treatment. In contrast, CBX7 inhibitors alone did affect both Polycomb-associated H2Aub-mediated gene repression as well as H3K9 methyltransferase activity. Therefore, we suggest that CBX7 is a promising therapeutic target in leukemia, as its inhibition can reactivate Polycomb and H3K9 methyltransferase target gene expression.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104691"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2024.104691","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The epigenome of leukemic cells is dysregulated, and genes required for cell cycle arrest and differentiation may become repressed, which contributes to the accumulation of undifferentiated malignant blood cells. Here we show that the Polycomb group protein CBX7 can interact with H3K9 methyltransferases EHMT1/2 and SETDB1. We aimed to assess whether combined interfering with these H3K9 methyltransferases and CBX7 could derepress target genes and thereby induce growth arrest of leukemic cells. We found that pharmacological inhibition of CBX7 abolishes the interaction of CBX7 with EHMT1/2 and SETDB1 and, subsequently, reduces H3K9 methylation levels which reactivates target gene expression. Reversely, upon pharmacological inhibition of H3K9 methyltransferases, CBX7 can take over gene repression. Finally, we found that combined inhibition of CBX7 and EHMT1/2 or SETDB1 had additive effects on reducing cell growth and inducing differentiation. However, we did not detect changes in epigenetic modifications, nor target gene derepression, after combination treatment. In contrast, CBX7 inhibitors alone did affect both Polycomb-associated H2Aub-mediated gene repression as well as H3K9 methyltransferase activity. Therefore, we suggest that CBX7 is a promising therapeutic target in leukemia, as its inhibition can reactivate Polycomb and H3K9 methyltransferase target gene expression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental hematology
Experimental hematology 医学-血液学
CiteScore
5.30
自引率
0.00%
发文量
84
审稿时长
58 days
期刊介绍: Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信