Developing a prediction model for cognitive impairment in older adults following critical illness.

IF 3.4 2区 医学 Q2 GERIATRICS & GERONTOLOGY
Ashley E Eisner, Lauren Witek, Nicholas M Pajewski, Stephanie P Taylor, Richa Bundy, Jeff D Williamson, Byron C Jaeger, Jessica A Palakshappa
{"title":"Developing a prediction model for cognitive impairment in older adults following critical illness.","authors":"Ashley E Eisner, Lauren Witek, Nicholas M Pajewski, Stephanie P Taylor, Richa Bundy, Jeff D Williamson, Byron C Jaeger, Jessica A Palakshappa","doi":"10.1186/s12877-024-05567-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>New or worsening cognitive impairment or dementia is common in older adults following an episode of critical illness, and screening post-discharge is recommended for those at increased risk. There is a need for prediction models of post-ICU cognitive impairment to guide delivery of screening and support resources to those in greatest need. We sought to develop and internally validate a machine learning model for new cognitive impairment or dementia in older adults after critical illness using electronic health record (EHR) data.</p><p><strong>Methods: </strong>Our cohort included patients > 60 years of age admitted to a large academic health system ICU in North Carolina between 2015 and 2021. Patients were included in the cohort if they were admitted to the ICU for ≥ 48 h with ≥ 2 ambulatory visits prior to hospitalization and at least one visit in the post-discharge year. We used a machine learning model, oblique random survival forests (ORSF), to examine the multivariable association of 54 structured data elements available by 3 months after discharge with incident diagnoses of cognitive impairment or dementia over 1-year.</p><p><strong>Results: </strong>In this cohort of 8,299 adults, 22% died and 4.9% were diagnosed with dementia or cognitive impairment within one year. The ORSF model showed reasonable discrimination (c-statistic = 0.83) and stability with little difference in the model's c-statistic across time.</p><p><strong>Conclusion: </strong>Machine learning using readily available EHR data can predict new cognitive impairment or dementia at 1-year post-ICU discharge in older adults with acceptable accuracy. Further studies are needed to understand how this tool may impact screening for cognitive impairment in the post-discharge period.</p>","PeriodicalId":9056,"journal":{"name":"BMC Geriatrics","volume":"24 1","pages":"982"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Geriatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12877-024-05567-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: New or worsening cognitive impairment or dementia is common in older adults following an episode of critical illness, and screening post-discharge is recommended for those at increased risk. There is a need for prediction models of post-ICU cognitive impairment to guide delivery of screening and support resources to those in greatest need. We sought to develop and internally validate a machine learning model for new cognitive impairment or dementia in older adults after critical illness using electronic health record (EHR) data.

Methods: Our cohort included patients > 60 years of age admitted to a large academic health system ICU in North Carolina between 2015 and 2021. Patients were included in the cohort if they were admitted to the ICU for ≥ 48 h with ≥ 2 ambulatory visits prior to hospitalization and at least one visit in the post-discharge year. We used a machine learning model, oblique random survival forests (ORSF), to examine the multivariable association of 54 structured data elements available by 3 months after discharge with incident diagnoses of cognitive impairment or dementia over 1-year.

Results: In this cohort of 8,299 adults, 22% died and 4.9% were diagnosed with dementia or cognitive impairment within one year. The ORSF model showed reasonable discrimination (c-statistic = 0.83) and stability with little difference in the model's c-statistic across time.

Conclusion: Machine learning using readily available EHR data can predict new cognitive impairment or dementia at 1-year post-ICU discharge in older adults with acceptable accuracy. Further studies are needed to understand how this tool may impact screening for cognitive impairment in the post-discharge period.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Geriatrics
BMC Geriatrics GERIATRICS & GERONTOLOGY-
CiteScore
5.70
自引率
7.30%
发文量
873
审稿时长
20 weeks
期刊介绍: BMC Geriatrics is an open access journal publishing original peer-reviewed research articles in all aspects of the health and healthcare of older people, including the effects of healthcare systems and policies. The journal also welcomes research focused on the aging process, including cellular, genetic, and physiological processes and cognitive modifications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信