Faeze Fazel Torshizi, Reza Majidzadeh Heravi, Ali Javadmanesh
{"title":"Effect of Zinc on Blood Biochemical and mTOR Gene Expression in Rats with Polycystic Ovarian.","authors":"Faeze Fazel Torshizi, Reza Majidzadeh Heravi, Ali Javadmanesh","doi":"10.1007/s12011-024-04452-6","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc (Zn) is a significant element of the reproductive system and is associated with several enzymes that regulate different metabolic pathways. Organic Zn can significantly affect polycystic ovarian syndrome (PCOS) pathogenesis. Insulin resistance (IR) is a common complication of PCOS. Mammalian target of rapamycin (mTOR), which controls crucial cell functions, is regulated by insulin and nutrients. It has two complexes, namely, mTORC1 and mTORC2. mTOR associates with its binding partner's regulatory associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (Rictor), which form these distinct complexes, respectively, and is activated in PCOS. This research aimed to evaluate the effect of Zn on the expression of mTOR signaling genes (Raptor and Rictor) and IR in PCOS model rats. Different Zn supplements, including standard diet (SD): (control - or + , SD without supplementation), Zn25, Zn75, and Zn175 (daily given three levels of 25, 75, and 175 mg Zn methionine (ZnMet)/kg for 6 weeks, respectively), were applied to the control and PCOS groups. Fasting glucose (FG), fasting insulin (FI), IR indices, and Raptor and Rictor expression levels were measured in both groups. The results showed that PCOS induction dramatically increased FG, FI, IR indices, and mTOR-related gene expression; however, different Zn supplementation concentrations, especially at 75 mg/kg, reduced the effects of PCOS induction. Organic Zn collectively exerted positive effects on Estradiol Valerate (EV)-induced PCOS rats by reducing IR and mTOR signaling gene (i.e., Raptor and Rictor) expression. Moreover, this study revealed a correlation between Zn and IR. Therefore, Zn supplementation could be a valuable therapeutic method for treating PCOS.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04452-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc (Zn) is a significant element of the reproductive system and is associated with several enzymes that regulate different metabolic pathways. Organic Zn can significantly affect polycystic ovarian syndrome (PCOS) pathogenesis. Insulin resistance (IR) is a common complication of PCOS. Mammalian target of rapamycin (mTOR), which controls crucial cell functions, is regulated by insulin and nutrients. It has two complexes, namely, mTORC1 and mTORC2. mTOR associates with its binding partner's regulatory associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (Rictor), which form these distinct complexes, respectively, and is activated in PCOS. This research aimed to evaluate the effect of Zn on the expression of mTOR signaling genes (Raptor and Rictor) and IR in PCOS model rats. Different Zn supplements, including standard diet (SD): (control - or + , SD without supplementation), Zn25, Zn75, and Zn175 (daily given three levels of 25, 75, and 175 mg Zn methionine (ZnMet)/kg for 6 weeks, respectively), were applied to the control and PCOS groups. Fasting glucose (FG), fasting insulin (FI), IR indices, and Raptor and Rictor expression levels were measured in both groups. The results showed that PCOS induction dramatically increased FG, FI, IR indices, and mTOR-related gene expression; however, different Zn supplementation concentrations, especially at 75 mg/kg, reduced the effects of PCOS induction. Organic Zn collectively exerted positive effects on Estradiol Valerate (EV)-induced PCOS rats by reducing IR and mTOR signaling gene (i.e., Raptor and Rictor) expression. Moreover, this study revealed a correlation between Zn and IR. Therefore, Zn supplementation could be a valuable therapeutic method for treating PCOS.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.