New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemia-like conditions.
Egor A Turovsky, Egor Y Plotnikov, Alexander V Simakin, Sergey V Gudkov, Elena G Varlamova
{"title":"New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemia-like conditions.","authors":"Egor A Turovsky, Egor Y Plotnikov, Alexander V Simakin, Sergey V Gudkov, Elena G Varlamova","doi":"10.1016/j.abb.2024.110241","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is the cause of high mortality and disability Worldwide. The material costs of stroke treatment and recovery are constantly increasing, making the search for effective and more cost-effective treatment approaches an urgent task for modern biomedicine. In this study, iron nanoparticles doped with selenium nanoparticles, FeNP@SeNPs, which are three-layered structures, were created and characterized using physical methods. Fluorescence microscopy, inhibitor and PCR analyzes were used to determine the signaling pathways involved in the activation of the Ca<sup>2+</sup> signaling system of cortical astrocytes and the protection of cells from ischemia-like conditions (oxygen-glucose deprivation and reoxygenation). In particular, when using magnetic selenium nanoparticles together with electromagnetic stimulation, an additional pathway for nanoparticle penetration into the cell is activated through the activation of TRPV4 channels and the mechanism of their endocytosis is facilitated. It has been shown that the use of magnetic selenium nanoparticles together with magnetic stimulation represents an advantage over the use of classical selenium nanoparticles, as the effective concentration of nanoparticles can be reduced many times over.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110241"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2024.110241","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is the cause of high mortality and disability Worldwide. The material costs of stroke treatment and recovery are constantly increasing, making the search for effective and more cost-effective treatment approaches an urgent task for modern biomedicine. In this study, iron nanoparticles doped with selenium nanoparticles, FeNP@SeNPs, which are three-layered structures, were created and characterized using physical methods. Fluorescence microscopy, inhibitor and PCR analyzes were used to determine the signaling pathways involved in the activation of the Ca2+ signaling system of cortical astrocytes and the protection of cells from ischemia-like conditions (oxygen-glucose deprivation and reoxygenation). In particular, when using magnetic selenium nanoparticles together with electromagnetic stimulation, an additional pathway for nanoparticle penetration into the cell is activated through the activation of TRPV4 channels and the mechanism of their endocytosis is facilitated. It has been shown that the use of magnetic selenium nanoparticles together with magnetic stimulation represents an advantage over the use of classical selenium nanoparticles, as the effective concentration of nanoparticles can be reduced many times over.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.