Reconstruction of biorefinery lignin into nanoparticles with controlled morphology and structure.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sang-Mook You, Jonghwa Kim, Suin Bae, Hyeon Soo Jang, Chan-Duck Jung, Hyolin Seong, Younghoon Kim, Hyun Gil Cha, June-Ho Choi, Hoyong Kim
{"title":"Reconstruction of biorefinery lignin into nanoparticles with controlled morphology and structure.","authors":"Sang-Mook You, Jonghwa Kim, Suin Bae, Hyeon Soo Jang, Chan-Duck Jung, Hyolin Seong, Younghoon Kim, Hyun Gil Cha, June-Ho Choi, Hoyong Kim","doi":"10.1016/j.ijbiomac.2024.138161","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin nanoparticles (LNPs) exhibit application potential in fields such as ultraviolet (UV) shielding, antioxidant materials, and water purification owing to their versatile chemical structure. However effective, nontoxic solvent-based strategies to synthesize LNPs with diverse morphologies have not been reported. This study presents a continuous biorefinery method to produce monodisperse LNPs with diverse morphologies from isopropanol-solubilized lignin (IPA-lignin). IPA-lignin, which is rich in hydroxyl and carboxyl groups, was extracted from sweet sorghum bagasse via disc refining. The recovered IPA was reused with IPA-lignin to generate LNPs with hollow to dense structures at various temperatures. Morphology control was achieved by modulating the interaction between IPA and distilled water (DIW), an antisolvent. The interplay between IPA and DIW, coupled with the self-assembly kinetics of the lignin molecules, affected the encapsulated DIW content of the final materials, resulting in particles with different densities. The resulting LNPs exhibited varied surface chemistries, leading to diverse UV protection (maximum absorbance wavelength = 361 nm), antioxidant (half-maximal inhibitory concentration = 0.48 mg/mL), and selective cationic dye adsorption (over 90 %) properties. The correlation between the properties of the LNPs and their applications was then assessed to offer valuable insights into their functional optimization.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138161"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138161","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin nanoparticles (LNPs) exhibit application potential in fields such as ultraviolet (UV) shielding, antioxidant materials, and water purification owing to their versatile chemical structure. However effective, nontoxic solvent-based strategies to synthesize LNPs with diverse morphologies have not been reported. This study presents a continuous biorefinery method to produce monodisperse LNPs with diverse morphologies from isopropanol-solubilized lignin (IPA-lignin). IPA-lignin, which is rich in hydroxyl and carboxyl groups, was extracted from sweet sorghum bagasse via disc refining. The recovered IPA was reused with IPA-lignin to generate LNPs with hollow to dense structures at various temperatures. Morphology control was achieved by modulating the interaction between IPA and distilled water (DIW), an antisolvent. The interplay between IPA and DIW, coupled with the self-assembly kinetics of the lignin molecules, affected the encapsulated DIW content of the final materials, resulting in particles with different densities. The resulting LNPs exhibited varied surface chemistries, leading to diverse UV protection (maximum absorbance wavelength = 361 nm), antioxidant (half-maximal inhibitory concentration = 0.48 mg/mL), and selective cationic dye adsorption (over 90 %) properties. The correlation between the properties of the LNPs and their applications was then assessed to offer valuable insights into their functional optimization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信