Insect chitosan derived from Hermetia illucens larvae suppresses adipogenic signaling and promotes the restoration of gut microbiome balance.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eun-Ju Kim, Seok-Hui Lee, Tae Hoon Kim, Jin Lee, Chang-Hyung Choi, Sei-Jung Lee
{"title":"Insect chitosan derived from Hermetia illucens larvae suppresses adipogenic signaling and promotes the restoration of gut microbiome balance.","authors":"Eun-Ju Kim, Seok-Hui Lee, Tae Hoon Kim, Jin Lee, Chang-Hyung Choi, Sei-Jung Lee","doi":"10.1016/j.ijbiomac.2024.138168","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan, the deacetylated form of chitin, is considered a valuable source of compounds in the feed and food industries. However, the impact of Hermetia illucens larvae chitosan (HCS) with specific physicochemical characteristics on obesity mediated by lipid accumulation and microbiome dysbiosis has not been fully elucidated. We purified HCS with a low molecular weight (84 kDa), low crystallinity, and a high deacetylation rate, characterizing it through several analytical techniques, including gel permeation chromatography, FT-IR, <sup>1</sup>H NMR, FE-SEM, and XRD analysis. HCS effectively inhibited the differentiation of 3T3-L1 preadipocytes by suppressing the production of reactive oxygen species. The adipogenic signaling of preadipocytes, mediated by the phosphorylation of mTOR and PPARγ, which are essential for the expression of fatty acid synthase, was attenuated by HCS. In mouse models fed high-fat diets, the oral administration of HCS prevented changes in white adipose tissue and liver weight and reduced plasma levels of total cholesterol. Additionally, the analysis of the microbiota using 16S rRNA revealed that HCS improved dysbiosis by modulating the composition and abundance of specific bacterial genera, including F. rodentium, L. gasseri, L. reuteri, and L. murinus. These findings highlight the potential of HCS as a candidate for the treatment of obesity-related metabolic diseases.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138168"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan, the deacetylated form of chitin, is considered a valuable source of compounds in the feed and food industries. However, the impact of Hermetia illucens larvae chitosan (HCS) with specific physicochemical characteristics on obesity mediated by lipid accumulation and microbiome dysbiosis has not been fully elucidated. We purified HCS with a low molecular weight (84 kDa), low crystallinity, and a high deacetylation rate, characterizing it through several analytical techniques, including gel permeation chromatography, FT-IR, 1H NMR, FE-SEM, and XRD analysis. HCS effectively inhibited the differentiation of 3T3-L1 preadipocytes by suppressing the production of reactive oxygen species. The adipogenic signaling of preadipocytes, mediated by the phosphorylation of mTOR and PPARγ, which are essential for the expression of fatty acid synthase, was attenuated by HCS. In mouse models fed high-fat diets, the oral administration of HCS prevented changes in white adipose tissue and liver weight and reduced plasma levels of total cholesterol. Additionally, the analysis of the microbiota using 16S rRNA revealed that HCS improved dysbiosis by modulating the composition and abundance of specific bacterial genera, including F. rodentium, L. gasseri, L. reuteri, and L. murinus. These findings highlight the potential of HCS as a candidate for the treatment of obesity-related metabolic diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信