Highly efficient biosynthesis of 6'-sialyllactose in a metabolically engineered plasmid-free Escherichia coli using a novel α2,6-sialyltransferase from Nicoletella semolina.
{"title":"Highly efficient biosynthesis of 6'-sialyllactose in a metabolically engineered plasmid-free Escherichia coli using a novel α2,6-sialyltransferase from Nicoletella semolina.","authors":"Yuanlin Liu, Liping Qiao, Lumeng Yu, Qian Lin, Ruiyan Wang, Yingying Zhu, Wanmeng Mu","doi":"10.1016/j.ijbiomac.2024.138151","DOIUrl":null,"url":null,"abstract":"<p><p>6'-Sialyllactose (6'-SL), one of the most prevalent sialylated human milk oligosaccharides (HMOs), has recently garnered significant attention due to its promising health effects for infants. In this study, the 6'-SL biosynthetic pathway in EZAK (E. coli BL21(DE3) ΔlacZΔnanAΔnanK) was initially constructed by introducing a plasmid expressing the precursor CMP-Neu5Ac synthesis pathway genes neuBCA. A novel α2,6-sialyltransferase Ev6ST (NCBI Reference Sequence: WP_132500470) was selected by introducing plasmids expressing various α2,6-sialyltransferase-encoding genes and subsequent comparisons of the yields of 6'-SL. Subsequently, by integrating neuBCA and ev6st individually or in combination on the chromosome of EZAK, the high-yielding plasmid-free strain EZAKBEP with an extracellular yield of 5.68 g/L. In the 5 L bioreactor, fed-batch fermentation resulted in an extracellular yield of 15.35 g/L of 6'-SL. This work successfully screened a high-efficiency α2,6-sialyltransferase Ev6ST and constructed a high-yielding strain EZAKBEP under plasmid-free conditions, which is the highest yield of shake flask fermentation to date, and provides some reference significance for subsequent research.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138151"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138151","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
6'-Sialyllactose (6'-SL), one of the most prevalent sialylated human milk oligosaccharides (HMOs), has recently garnered significant attention due to its promising health effects for infants. In this study, the 6'-SL biosynthetic pathway in EZAK (E. coli BL21(DE3) ΔlacZΔnanAΔnanK) was initially constructed by introducing a plasmid expressing the precursor CMP-Neu5Ac synthesis pathway genes neuBCA. A novel α2,6-sialyltransferase Ev6ST (NCBI Reference Sequence: WP_132500470) was selected by introducing plasmids expressing various α2,6-sialyltransferase-encoding genes and subsequent comparisons of the yields of 6'-SL. Subsequently, by integrating neuBCA and ev6st individually or in combination on the chromosome of EZAK, the high-yielding plasmid-free strain EZAKBEP with an extracellular yield of 5.68 g/L. In the 5 L bioreactor, fed-batch fermentation resulted in an extracellular yield of 15.35 g/L of 6'-SL. This work successfully screened a high-efficiency α2,6-sialyltransferase Ev6ST and constructed a high-yielding strain EZAKBEP under plasmid-free conditions, which is the highest yield of shake flask fermentation to date, and provides some reference significance for subsequent research.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.