Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study.
{"title":"Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study.","authors":"Parinaz Javanbakht, Afshin Talebinasab, Reza Asadi-Golshan, Maryam Shabani, Iraj Ragerdi Kashani, Sina Mojaverrostami","doi":"10.1016/j.fct.2024.115126","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies.</p><p><strong>Materials and methods: </strong>Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis.</p><p><strong>Results: </strong>We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC.</p><p><strong>Conclusions: </strong>In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115126"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2024.115126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies.
Materials and methods: Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis.
Results: We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC.
Conclusions: In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.