Fault rupture propagation through stratified sand–clay deposits and engineered earth structures: a meshfree and critical-state modeling approach

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Enrique M. del Castillo, Alomir H. Fávero Neto, Ronaldo I. Borja
{"title":"Fault rupture propagation through stratified sand–clay deposits and engineered earth structures: a meshfree and critical-state modeling approach","authors":"Enrique M. del Castillo,&nbsp;Alomir H. Fávero Neto,&nbsp;Ronaldo I. Borja","doi":"10.1007/s11440-024-02421-w","DOIUrl":null,"url":null,"abstract":"<div><p>Permanent deformation and uplift caused by fault rupture is one of the most significant hazards posed by earthquakes on the built environment. In this paper, we use smoothed particle hydrodynamics (SPH) to explore the effects of soil layering or stratification on the trajectories and deformation patterns caused by rupturing reverse faults in bedrock, as well as in the foundations of engineered earth structures. SPH is a continuum meshfree numerical method highly adept at modeling large deformation problems in geotechnics. Through the use of constitutive models involving softening behavior as well as critical state type models, we isolate the effects of rigid body rotation from critical state behavior of soil in helping explain the frequently observed rotation of shear bands emanating from the bedrock fault. This analysis is facilitated by the fact that the SPH method allows us to track the propagation of shear bands over substantial amounts of vertical uplift (more than 50% of the total height of the soil deposit), far beyond many previous computational studies employing the finite element method (FEM). We observe and characterize various emergent features including fault bifurcations, stunted faults, and tension cracking, while providing insights into practical guidelines regarding the potential surface distortion width, and the critical amount of fault displacement required for surface rupture depending on the multilayered constitution of the soil deposit. Finally, we predict the expected amount of surface distortion and internal damage to earthen embankments depending on varying fault location and soil makeup.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 12","pages":"7767 - 7798"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02421-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Permanent deformation and uplift caused by fault rupture is one of the most significant hazards posed by earthquakes on the built environment. In this paper, we use smoothed particle hydrodynamics (SPH) to explore the effects of soil layering or stratification on the trajectories and deformation patterns caused by rupturing reverse faults in bedrock, as well as in the foundations of engineered earth structures. SPH is a continuum meshfree numerical method highly adept at modeling large deformation problems in geotechnics. Through the use of constitutive models involving softening behavior as well as critical state type models, we isolate the effects of rigid body rotation from critical state behavior of soil in helping explain the frequently observed rotation of shear bands emanating from the bedrock fault. This analysis is facilitated by the fact that the SPH method allows us to track the propagation of shear bands over substantial amounts of vertical uplift (more than 50% of the total height of the soil deposit), far beyond many previous computational studies employing the finite element method (FEM). We observe and characterize various emergent features including fault bifurcations, stunted faults, and tension cracking, while providing insights into practical guidelines regarding the potential surface distortion width, and the critical amount of fault displacement required for surface rupture depending on the multilayered constitution of the soil deposit. Finally, we predict the expected amount of surface distortion and internal damage to earthen embankments depending on varying fault location and soil makeup.

Abstract Image

断层破裂在层状砂粘土沉积物和工程土结构中的传播:一种无网格和临界状态建模方法
断层破裂引起的永久变形和隆升是地震对建筑环境造成的最严重的危害之一。在本文中,我们使用光滑颗粒水动力学(SPH)来探讨土壤分层或分层对基岩中反向断裂破裂引起的轨迹和变形模式的影响,以及工程土工结构的基础。SPH是一种连续体无网格数值方法,非常适合模拟岩土工程中的大变形问题。通过使用涉及软化行为的本构模型以及临界状态类型模型,我们将刚体旋转的影响从土壤的临界状态行为中分离出来,帮助解释频繁观测到的基岩断层发出的剪切带旋转。SPH方法允许我们跟踪剪切带在大量垂直隆起(超过土壤沉积物总高度的50%)上的传播,这一事实促进了这一分析,远远超出了许多采用有限元方法(FEM)的先前计算研究。我们观察并描述了各种紧急特征,包括断层分叉、发育不良的断层和张拉裂缝,同时提供了关于潜在地表变形宽度的实用指南,以及根据土壤沉积物的多层结构所需的地表破裂所需的断层位移的临界量。最后,根据不同的断层位置和土壤组成,我们预测了土堤防的表面变形和内部破坏的预期量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信