{"title":"Nanocellulose composites: synthesis, properties, and applications to wastewater treatment","authors":"Mesha Mbisana, Ngonye Keroletswe, Florence Nareetsile, Dikabo Mogopodi, Inonge Chibua","doi":"10.1007/s10570-024-06268-y","DOIUrl":null,"url":null,"abstract":"<div><p>The growing worldwide environmental and water pollution challenges require the use of renewable biomass-based materials to purify water systems. The remarkable qualities of nanocellulose (NC) and its eco-friendliness make it a desirable material for this purpose. Hence, many investigations have been conducted on the optimization of NC-based materials for water purification. This review presents the first examination of the progress made in creating emerging NC composites using molecularly imprinted polymers (MIPs), metal organic frameworks (MOFs), and aluminosilicates. MIPs, MOFs, and aluminosilicates endow NC composites with stability, multifunctionality, and extended reusability. The applications of these composites to wastewater treatment, such as the removal of toxic heavy metals, dyes, pharmaceuticals, and microorganisms are discussed. Finally, the economic viability, challenges, and future perspectives of these emerging NC composites and their applications are discussed. The research gaps demonstrated in this review will enable the exploration of new areas of study on functionalised NC composites, leading to enhanced industrial applications. Moreover, the utilisation of NC composites with suitably modified components results in multifunctional adsorbents that have great potential for effectively eliminating many contaminants simultaneously.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 18","pages":"10651 - 10678"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-024-06268-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06268-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
The growing worldwide environmental and water pollution challenges require the use of renewable biomass-based materials to purify water systems. The remarkable qualities of nanocellulose (NC) and its eco-friendliness make it a desirable material for this purpose. Hence, many investigations have been conducted on the optimization of NC-based materials for water purification. This review presents the first examination of the progress made in creating emerging NC composites using molecularly imprinted polymers (MIPs), metal organic frameworks (MOFs), and aluminosilicates. MIPs, MOFs, and aluminosilicates endow NC composites with stability, multifunctionality, and extended reusability. The applications of these composites to wastewater treatment, such as the removal of toxic heavy metals, dyes, pharmaceuticals, and microorganisms are discussed. Finally, the economic viability, challenges, and future perspectives of these emerging NC composites and their applications are discussed. The research gaps demonstrated in this review will enable the exploration of new areas of study on functionalised NC composites, leading to enhanced industrial applications. Moreover, the utilisation of NC composites with suitably modified components results in multifunctional adsorbents that have great potential for effectively eliminating many contaminants simultaneously.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.