Bioinspired phosphorus functionalized polycarbazole as highly potent flame retardants and hydrophobic material for smart textile applications

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Madhuri Bhakare, Kshama Lokhande, Mahesh Bondarde, Pratik Dhumal, Pranay Tambe, Surajit Some
{"title":"Bioinspired phosphorus functionalized polycarbazole as highly potent flame retardants and hydrophobic material for smart textile applications","authors":"Madhuri Bhakare,&nbsp;Kshama Lokhande,&nbsp;Mahesh Bondarde,&nbsp;Pratik Dhumal,&nbsp;Pranay Tambe,&nbsp;Surajit Some","doi":"10.1007/s10570-024-06263-3","DOIUrl":null,"url":null,"abstract":"<div><p>Creating long-lasting, environmentally friendly, and fire-resistant materials using biomass derivatives remains a significant challenge in fire safety and prevention. This study addresses this challenge by developing novel, naturally derived coatings that enhance the fire resistance of textiles. Specifically, carbazole was polymerized in situ using benzoyl peroxide, with phosphoric acid facilitating both polymerization and functionalization to produce phosphorous-functionalized polycarbazole (P@PCz). This material improves the hydrophobicity and flame retardancy of cotton fabric. The study also involved the extraction of carbazole from Murraya koenigii bioresources, producing bioinspired phosphorus-functionalized polycarbazole (BP@PCz), achieving similar results. The synthesized nanocomposite-coated cotton fabric demonstrated exceptional flame-retardant and hydrophobic properties. Notably, P@PCz-coated cotton fabrics withstood continuous flame exposure for up to 585 s, compared to 62 s for PCz-coated fabrics and just 14 s for blank fabrics. Flame retardancy was further evaluated using the limiting oxygen index (LOI) and vertical flammability tests, with P@PCz-coated fabrics achieving an LOI value of 40.4%, significantly higher than the 23.2% for PCz-coated fabrics. Additionally, the water contact angle of P@PCz-coated cotton fabric was measured at 121.39°, indicating excellent hydrophobic properties. This study presents a novel approach for the rapid, large-scale synthesis of P@PCz, demonstrating its potential for various sustainable chemical applications, including enhanced hydrophobicity, and flame retardancy. The use of bioinspired materials in this work paves the way for the development of eco-friendly flame-retardant polymeric materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 18","pages":"11199 - 11210"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06263-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Creating long-lasting, environmentally friendly, and fire-resistant materials using biomass derivatives remains a significant challenge in fire safety and prevention. This study addresses this challenge by developing novel, naturally derived coatings that enhance the fire resistance of textiles. Specifically, carbazole was polymerized in situ using benzoyl peroxide, with phosphoric acid facilitating both polymerization and functionalization to produce phosphorous-functionalized polycarbazole (P@PCz). This material improves the hydrophobicity and flame retardancy of cotton fabric. The study also involved the extraction of carbazole from Murraya koenigii bioresources, producing bioinspired phosphorus-functionalized polycarbazole (BP@PCz), achieving similar results. The synthesized nanocomposite-coated cotton fabric demonstrated exceptional flame-retardant and hydrophobic properties. Notably, P@PCz-coated cotton fabrics withstood continuous flame exposure for up to 585 s, compared to 62 s for PCz-coated fabrics and just 14 s for blank fabrics. Flame retardancy was further evaluated using the limiting oxygen index (LOI) and vertical flammability tests, with P@PCz-coated fabrics achieving an LOI value of 40.4%, significantly higher than the 23.2% for PCz-coated fabrics. Additionally, the water contact angle of P@PCz-coated cotton fabric was measured at 121.39°, indicating excellent hydrophobic properties. This study presents a novel approach for the rapid, large-scale synthesis of P@PCz, demonstrating its potential for various sustainable chemical applications, including enhanced hydrophobicity, and flame retardancy. The use of bioinspired materials in this work paves the way for the development of eco-friendly flame-retardant polymeric materials.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信