Decoupling of redox processes from soil saturation in Arctic tundra

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Erin C. Rooney, Erin VanderJeugdt, Sumant Avasarala, Imtiaz Miah, Matthew J. Berens, Lauren Kinsman-Costello, Michael N. Weintraub, Elizabeth M. Herndon
{"title":"Decoupling of redox processes from soil saturation in Arctic tundra","authors":"Erin C. Rooney, Erin VanderJeugdt, Sumant Avasarala, Imtiaz Miah, Matthew J. Berens, Lauren Kinsman-Costello, Michael N. Weintraub, Elizabeth M. Herndon","doi":"10.1038/s43247-024-01927-1","DOIUrl":null,"url":null,"abstract":"Permafrost thaw in warming Arctic landscapes alters hydrology and saturation-driven biogeochemical processes. Models assume that aerobic respiration occurs in drained soils while saturated soils support methanogenesis; however, saturated soils maintain redox gradients that host a range of anaerobic metabolisms. We evaluated how redox potential and redox-active solutes vary with soil moisture in the active layer of permafrost-affected acidic and non-acidic tundra hillslopes. Oxidizing conditions persisted in highly permeable organic horizons of both unsaturated tussock tundra and saturated wet sedge meadows. Redox potential decreased with depth in all soils as increasing soil bulk density restricted groundwater flow and oxygen diffusion. High concentrations of dissolved iron, phosphate, and organic carbon coincided with redox boundaries below the soil surface in acidic tundra, indicating active iron redox cycling and potential release of adsorbed phosphate during iron (oxyhydr)oxide dissolution. In non-acidic tundra, weatherable minerals affected nutrient dynamics more than redox-driven iron cycling, especially in low-lying, saturated areas where thaw reached mineral soils. The role of thaw depth and the ability of saturated soils to maintain oxidizing conditions in organic surface layers highlight the importance of soil physical properties and hydrology in predicting biogeochemical processes and greenhouse gas emissions. Redox potential and the cycling of redox-active solutes are decoupled from soil moisture in the active layer of permafrost-affected areas, according to a field study conducted in the tundra areas of Alaska’s North Slope.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01927-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01927-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Permafrost thaw in warming Arctic landscapes alters hydrology and saturation-driven biogeochemical processes. Models assume that aerobic respiration occurs in drained soils while saturated soils support methanogenesis; however, saturated soils maintain redox gradients that host a range of anaerobic metabolisms. We evaluated how redox potential and redox-active solutes vary with soil moisture in the active layer of permafrost-affected acidic and non-acidic tundra hillslopes. Oxidizing conditions persisted in highly permeable organic horizons of both unsaturated tussock tundra and saturated wet sedge meadows. Redox potential decreased with depth in all soils as increasing soil bulk density restricted groundwater flow and oxygen diffusion. High concentrations of dissolved iron, phosphate, and organic carbon coincided with redox boundaries below the soil surface in acidic tundra, indicating active iron redox cycling and potential release of adsorbed phosphate during iron (oxyhydr)oxide dissolution. In non-acidic tundra, weatherable minerals affected nutrient dynamics more than redox-driven iron cycling, especially in low-lying, saturated areas where thaw reached mineral soils. The role of thaw depth and the ability of saturated soils to maintain oxidizing conditions in organic surface layers highlight the importance of soil physical properties and hydrology in predicting biogeochemical processes and greenhouse gas emissions. Redox potential and the cycling of redox-active solutes are decoupled from soil moisture in the active layer of permafrost-affected areas, according to a field study conducted in the tundra areas of Alaska’s North Slope.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信