Process and techno-economic analyses of ethylene production by electrochemical reduction of aqueous alkaline carbonates

Anush Venkataraman, Hakhyeon Song, Victor D. Brandão, Chen Ma, Magdalena Salazar Casajus, Carlos A. Fernandez Otero, Carsten Sievers, Marta C. Hatzell, Saket S. Bhargava, Sukaran S. Arora, Carlos Villa, Sandeep Dhingra, Sankar Nair
{"title":"Process and techno-economic analyses of ethylene production by electrochemical reduction of aqueous alkaline carbonates","authors":"Anush Venkataraman, Hakhyeon Song, Victor D. Brandão, Chen Ma, Magdalena Salazar Casajus, Carlos A. Fernandez Otero, Carsten Sievers, Marta C. Hatzell, Saket S. Bhargava, Sukaran S. Arora, Carlos Villa, Sandeep Dhingra, Sankar Nair","doi":"10.1038/s44286-024-00137-y","DOIUrl":null,"url":null,"abstract":"Electrolyzer architectures using bipolar membranes (BPMs) to convert alkaline aqueous carbonates into hydrocarbons are a potential solution to overcome limitations of conventional carbon dioxide (CO2) electrolyzers. We present comprehensive process designs, simulations and a techno-economic evaluation of integrated electrolysis-based systems (from CO2 capture to product separation and stream recycling) for the production of ethylene from carbonates. Using three different scenarios for an ethylene plant with a production capacity of 2 million metric tons per year, a set of key projected performance metrics has been determined. Carbonates for electrolysis sourced from direct air capture and flue gas capture scenarios showed equivalent economics in the optimistic scenario. Concentration of capture carbonates to at least 1.5 M by alkali-stable membranes upstream of the electrolyzer is needed to make the overall process feasible. Electrolyzer sizing, configuration and costing are examined in detail to better account for economies of scale. Emerging improvements in BPM-based processes—primarily in the electrolyzer design and BPM performance—can lead to a minimum selling price that is lower than for conventional CO2 electrolysis and approaching that achieved via naphtha-based processes. Future industrial processes for the electrolytic production of ethylene from aqueous carbonate feedstocks are not well understood. The authors develop unit operations and full process designs, evaluate the techno-economics at scale, identify key process requirements and barriers, and elucidate the minimum benchmarks needed for the future commercial viability of this technology.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 11","pages":"710-723"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00137-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00137-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyzer architectures using bipolar membranes (BPMs) to convert alkaline aqueous carbonates into hydrocarbons are a potential solution to overcome limitations of conventional carbon dioxide (CO2) electrolyzers. We present comprehensive process designs, simulations and a techno-economic evaluation of integrated electrolysis-based systems (from CO2 capture to product separation and stream recycling) for the production of ethylene from carbonates. Using three different scenarios for an ethylene plant with a production capacity of 2 million metric tons per year, a set of key projected performance metrics has been determined. Carbonates for electrolysis sourced from direct air capture and flue gas capture scenarios showed equivalent economics in the optimistic scenario. Concentration of capture carbonates to at least 1.5 M by alkali-stable membranes upstream of the electrolyzer is needed to make the overall process feasible. Electrolyzer sizing, configuration and costing are examined in detail to better account for economies of scale. Emerging improvements in BPM-based processes—primarily in the electrolyzer design and BPM performance—can lead to a minimum selling price that is lower than for conventional CO2 electrolysis and approaching that achieved via naphtha-based processes. Future industrial processes for the electrolytic production of ethylene from aqueous carbonate feedstocks are not well understood. The authors develop unit operations and full process designs, evaluate the techno-economics at scale, identify key process requirements and barriers, and elucidate the minimum benchmarks needed for the future commercial viability of this technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信