Scalable production of critically thin polyethylene films via multistep stretching

Runlai Li, Zirui Wang, Weilong Sun, He Zhang, Yuwen Zeng, Xiaoxu Zhao, Wenbing Hu, Hua Deng, Kian Ping Loh, Qiang Fu
{"title":"Scalable production of critically thin polyethylene films via multistep stretching","authors":"Runlai Li, Zirui Wang, Weilong Sun, He Zhang, Yuwen Zeng, Xiaoxu Zhao, Wenbing Hu, Hua Deng, Kian Ping Loh, Qiang Fu","doi":"10.1038/s44286-024-00139-w","DOIUrl":null,"url":null,"abstract":"Plastic films are among the most used materials. In many applications, both high strength and low thickness are required. The thickness of free-standing plastic films has recently been reduced to micrometres, 200 nm and even 60 nm. Pushing this boundary further faces considerable challenges, as processability conflicts with stability at the ‘ultrathin’ scale (below ~100–200 nm). Here, to overcome this trade-off, we modulated the entanglement density of plastic chains to identify a maximum stretching processing window. Then, relaxation was introduced during stretching to kinetically stabilize the ultrathin film. Combined, polyethylene film thicknesses were reduced to ~12 nm, near its critical thickness. This critically thin polyethylene reveals physical properties different from its bulk counterparts, such as high mechanical strength (113.9 GPa (g cm–3)–1), abnormal interfacial properties and a high aspect ratio near 108. Potential applications of these films include nuclear fusion ignition support and thin breathable epidermal sensors. Our work reveals advanced processing strategies, distinctive properties and broader applications of plastic films near the processing limit. A multistep stretch–relaxation process is used to produce critically thin polyethylene films. Several key physical properties of the polyethylene films are presented, and their potential applications in nuclear fusion and epidermal sensing are highlighted.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 11","pages":"702-709"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00139-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic films are among the most used materials. In many applications, both high strength and low thickness are required. The thickness of free-standing plastic films has recently been reduced to micrometres, 200 nm and even 60 nm. Pushing this boundary further faces considerable challenges, as processability conflicts with stability at the ‘ultrathin’ scale (below ~100–200 nm). Here, to overcome this trade-off, we modulated the entanglement density of plastic chains to identify a maximum stretching processing window. Then, relaxation was introduced during stretching to kinetically stabilize the ultrathin film. Combined, polyethylene film thicknesses were reduced to ~12 nm, near its critical thickness. This critically thin polyethylene reveals physical properties different from its bulk counterparts, such as high mechanical strength (113.9 GPa (g cm–3)–1), abnormal interfacial properties and a high aspect ratio near 108. Potential applications of these films include nuclear fusion ignition support and thin breathable epidermal sensors. Our work reveals advanced processing strategies, distinctive properties and broader applications of plastic films near the processing limit. A multistep stretch–relaxation process is used to produce critically thin polyethylene films. Several key physical properties of the polyethylene films are presented, and their potential applications in nuclear fusion and epidermal sensing are highlighted.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信