{"title":"Weathering crust formation outpaces melt-albedo feedback on blue ice shelves of East Antarctica","authors":"Giacomo Traversa, Biagio Di Mauro","doi":"10.1038/s43247-024-01896-5","DOIUrl":null,"url":null,"abstract":"The penetration of shortwave radiation beneath glacier surfaces has the potential to induce melting leading to the formation of a porous white layer commonly known as weathering crust. Very little is known about its role in the Antarctic Ice Sheet. Here we provide unprecedented observational evidence for the weathering crust formation over blue ice areas of ice shelves of the Northern Victoria Land in austral summer 2022–2023, by means of in-situ and remote-sensing observations. Then, we estimated the radiative impact of the weathering crust, demonstrating a predominant negative albedo feedback over blue ice areas (on 93% of the study area), with respect to positive melt-albedo feedback (supraglacial-pond formation). Furthermore, weathering crust occurred after a period of increasing temperature, relative humidity, low wind speed and clear sky conditions. Moreover, we claim that this new process should be included in regional climate modelling of the Antarctic Ice Sheet. Weathering crust formation over blue ice areas of ice shelves may lead to negative albedo feedback in Antarctic coasts, according to in-situ and remote-sensing observations.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01896-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01896-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The penetration of shortwave radiation beneath glacier surfaces has the potential to induce melting leading to the formation of a porous white layer commonly known as weathering crust. Very little is known about its role in the Antarctic Ice Sheet. Here we provide unprecedented observational evidence for the weathering crust formation over blue ice areas of ice shelves of the Northern Victoria Land in austral summer 2022–2023, by means of in-situ and remote-sensing observations. Then, we estimated the radiative impact of the weathering crust, demonstrating a predominant negative albedo feedback over blue ice areas (on 93% of the study area), with respect to positive melt-albedo feedback (supraglacial-pond formation). Furthermore, weathering crust occurred after a period of increasing temperature, relative humidity, low wind speed and clear sky conditions. Moreover, we claim that this new process should be included in regional climate modelling of the Antarctic Ice Sheet. Weathering crust formation over blue ice areas of ice shelves may lead to negative albedo feedback in Antarctic coasts, according to in-situ and remote-sensing observations.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.