Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
S. Vishnu Shankar, R. Kumaraperumal, M. Radha, Balaji Kannan, S. G. Patil, G. Vanitha, M. Nivas Raj, M. Athira, S. Ananthakrishnan
{"title":"Generation of digital soil mapping for Coimbatore districts using multinomial logistic regression approach","authors":"S. Vishnu Shankar,&nbsp;R. Kumaraperumal,&nbsp;M. Radha,&nbsp;Balaji Kannan,&nbsp;S. G. Patil,&nbsp;G. Vanitha,&nbsp;M. Nivas Raj,&nbsp;M. Athira,&nbsp;S. Ananthakrishnan","doi":"10.1007/s12665-024-11985-5","DOIUrl":null,"url":null,"abstract":"<div><p>Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11985-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Digital soil mapping (DSM) is a significant advancement in soil mapping systems, enabling efficient mapping of soil patterns across different temporal and spatial scales. This computer-assisted method surpasses the traditional soil mapping techniques in terms of both compatibility and accuracy. This study employed multinomial logistic regression to map the soil subgroup levels in the Coimbatore district. Primary sample points and Natural Resource Information System (NRIS) database points serve as the dependent variables, while significant covariate layers act as independent variables. The accuracy assessment showed an overall mapping accuracy of 52.58%, with a kappa statistic of 0.50. Additionally, the calculated disagreement measures, including quantity and allocation disagreements, were 21.50% and 25.92%, respectively. The approach provides spatial soil maps at 30 m resolution and was extended for the Coimbatore district of Tamil Nadu, considering the lack of organized high resolution soil maps for operational use. The area statistics calculated from the digital soil map showed that the soil orders Vertisols cover the largest area, accounting for approximately 25.97% (122,630.38 ha) of the total land area. Soil subgroups like Ultic Haplustalfs and Vertic Ustorthents occupy substantial portions of the land, accounting for 9.95% and 9.62% of the total area, respectively. The total land area classified by the map accounts for 427,432.10 ha, i.e., 90.53% of the total land area, of which 44,696.46 ha (9.467%) remains unclassified. The study also presents the statistics on soil order at the block level. These findings provide valuable insights into soil classification, offering a comprehensive understanding of soil distribution and characteristics that support effective decision-making for sustainable land management and agricultural practices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信