{"title":"Copper single-atom embedded mesoporous carbon nitride: a hybrid material for VOC sensing","authors":"Xueze Chu, Clastinrusselraj Indirathankam Sathish, Selvarajan Premkumar, Shibo Xi, Jiangtao Qu, Rongkun Zheng, Xiaojiang Yu, Mark Breese, Dongchen Qi, Wei Li, Liang Qiao, Ajayan Vinu, Jiabao Yi","doi":"10.1007/s42114-024-01075-2","DOIUrl":null,"url":null,"abstract":"<div><p>Single-atom metal catalysts (SACs) hold immense promise for catalytic applications, yet their potential as volatile organic compound (VOC) sensing materials remains largely untapped. Here, we report a facile approach to produce Cu single-atom (Cu-SA) embedded mesoporous carbon nitride (mCN) hybrid material for precise and selective detection of VOCs. The study highlights the exceptional sensing capabilities of Cu-SA-mCN, focusing on its remarkable selectivity for aliphatic esters, acids, and water molecules. Explicitly, the material demonstrates an exciting adsorption capacity of 109.4 mmol g<sup>−1</sup> for acetic acid, showcasing its superior performance, which is three times higher than mesoporous carbon nitride without Cu single atoms. The high selectivity and sensitivity of Cu-SA-mCN are attributed to the mesoporous nature, abundant nitrogen moieties, and Cu-SAs present within the material. Density functional theory (DFT) calculation results demonstrate a strong charge transfer between Cu-SA-mCN and adsorbate molecules, contributing to the material’s excellent sensing properties. This work opens new avenues in the development of mCN materials embedded with single metal atoms, enriching the field of VOC sensors with stable, accurate, and cost-effective solutions with potential applications in environmental monitoring and industrial safety.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01075-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom metal catalysts (SACs) hold immense promise for catalytic applications, yet their potential as volatile organic compound (VOC) sensing materials remains largely untapped. Here, we report a facile approach to produce Cu single-atom (Cu-SA) embedded mesoporous carbon nitride (mCN) hybrid material for precise and selective detection of VOCs. The study highlights the exceptional sensing capabilities of Cu-SA-mCN, focusing on its remarkable selectivity for aliphatic esters, acids, and water molecules. Explicitly, the material demonstrates an exciting adsorption capacity of 109.4 mmol g−1 for acetic acid, showcasing its superior performance, which is three times higher than mesoporous carbon nitride without Cu single atoms. The high selectivity and sensitivity of Cu-SA-mCN are attributed to the mesoporous nature, abundant nitrogen moieties, and Cu-SAs present within the material. Density functional theory (DFT) calculation results demonstrate a strong charge transfer between Cu-SA-mCN and adsorbate molecules, contributing to the material’s excellent sensing properties. This work opens new avenues in the development of mCN materials embedded with single metal atoms, enriching the field of VOC sensors with stable, accurate, and cost-effective solutions with potential applications in environmental monitoring and industrial safety.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.