{"title":"Promotional Catalytic Activity of Bifunctional Ru-Ce-Zr Catalysts forNH3-SCO by Deposition Order of Dual Active Components","authors":"Zhengxiong Jiang","doi":"10.1007/s10562-024-04891-9","DOIUrl":null,"url":null,"abstract":"<div><p>The ammonia fuel injected into the combustion chamber cannot be completely combusted resulting in high levels of escaped ammonia in the ammonia-fueled engine exhaust. It is a feasible way to obtain ammonia selective catalytic oxidation (NH<sub>3</sub>-SCO) catalysts with excellent performance using noble metal-transition metal catalysts. In this work, a series of Ru-Ce-Zr bifunctional catalysts were synthesized by precipitation and impregnation methods to investigate the influence of introduction methods of different active components (Ru and Ce) on their physicochemical properties and NH<sub>3</sub>-SCO performance. Among them, the BET and NH<sub>3</sub>-TPD results showed that Ru-Ce/ZrO<sub>2</sub> (RC/Z) catalyst had the largest specific surface area and NH<sub>3</sub> desorption amount, indicating that its surface could capture more NH<sub>3</sub>. More importantly, compared to other catalysts, RC/Z catalyst exhibited highest relative concentration of Ce<sup>3+</sup>, which facilitated electron transfer via Ce<sup>4+</sup> + Ru<sup>3+</sup> ↔ Ce<sup>3+</sup> + Ru<sup>4+</sup>. The Ru-Ce/ZrO<sub>2</sub> catalyst exhibited the best catalytic performance under the strong interaction between Ru and Ce species. its NH<sub>3</sub> conversion reached 100% and N<sub>2</sub> selectivity was 95.7% at 237 °C. The N<sub>2</sub> selectivity exceeded 70% over a wide temperature range of 150–400 °C. In situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) showed that the surface of RC/Z catalyst exhibited the highest amount of Lewis and Brønsted acid sites, which might be one of the reasons for its excellent N<sub>2</sub> selectivity. This work revealed the effect of the way of introduction of Ru and Ce active species on their NH<sub>3</sub>-SCO performance.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04891-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ammonia fuel injected into the combustion chamber cannot be completely combusted resulting in high levels of escaped ammonia in the ammonia-fueled engine exhaust. It is a feasible way to obtain ammonia selective catalytic oxidation (NH3-SCO) catalysts with excellent performance using noble metal-transition metal catalysts. In this work, a series of Ru-Ce-Zr bifunctional catalysts were synthesized by precipitation and impregnation methods to investigate the influence of introduction methods of different active components (Ru and Ce) on their physicochemical properties and NH3-SCO performance. Among them, the BET and NH3-TPD results showed that Ru-Ce/ZrO2 (RC/Z) catalyst had the largest specific surface area and NH3 desorption amount, indicating that its surface could capture more NH3. More importantly, compared to other catalysts, RC/Z catalyst exhibited highest relative concentration of Ce3+, which facilitated electron transfer via Ce4+ + Ru3+ ↔ Ce3+ + Ru4+. The Ru-Ce/ZrO2 catalyst exhibited the best catalytic performance under the strong interaction between Ru and Ce species. its NH3 conversion reached 100% and N2 selectivity was 95.7% at 237 °C. The N2 selectivity exceeded 70% over a wide temperature range of 150–400 °C. In situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) showed that the surface of RC/Z catalyst exhibited the highest amount of Lewis and Brønsted acid sites, which might be one of the reasons for its excellent N2 selectivity. This work revealed the effect of the way of introduction of Ru and Ce active species on their NH3-SCO performance.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.