T. Paul, A. K. Sudheer, M. Gaddam, R. Pawar, A. S. Maurya, D. S. Jyethi
{"title":"Carbonaceous aerosol in the Brahmaputra plains: Sources, and influence from the hotspot Indo-Gangetic plains, India","authors":"T. Paul, A. K. Sudheer, M. Gaddam, R. Pawar, A. S. Maurya, D. S. Jyethi","doi":"10.1007/s10874-024-09464-z","DOIUrl":null,"url":null,"abstract":"<div><p>Organic carbon (OC) and elemental carbon (EC) play a significant role in aerosol mass and atmospheric processes. This study is focused on the eastern part of the Great Northern Plains of India, namely the Brahmaputra Plains, to understand the influence of regional and local contribution on the carbonaceous fraction of PM<sub>2.5</sub>. Mean annual PM<sub>2.5</sub> concentrations exceeded the National Ambient Air Quality Standards (NAAQS), with values of 46.6 ± 30.0 μg/m<sup>3</sup> in the rural area and 50.4 ± 34.4 μg/m<sup>3</sup> in the semi-urban area. The range in monsoon-winter was found to be 22.7–71.9 μg/m<sup>3</sup>. OC and EC contribute 44–50% of the PM<sub>2.5</sub> mass concentration. The OC/EC ratios ranged from 3.3 to 9.3 in the rural area and from 4.3 to 6.9 in the semi-urban area, indicating significant secondary organic aerosol (SOA) formation, especially during the high photochemical period of the pre-monsoon season. Lower δ13C values were observed during winter (-27.5‰ rural, -27.3‰ semi-urban), pre-monsoon (-28.1‰ rural, -27.6‰ semi-urban), and post-monsoon (-28.2‰ rural, -28.1‰ semi-urban) periods, suggesting influences from biomass burning, fossil fuel combustion, and aged aerosols. The study employs cluster analysis of air mass trajectory, and Moderate Resolution Imaging Spectroradiometer (MODIS) fire data to determine the influence of the hotspot Indo-Gangetic Plain (IGP) and long-range transport on aerosol carbonaceous content during most seasons except the monsoon period June–September in the Brahmaputra Plains.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"81 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-024-09464-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Organic carbon (OC) and elemental carbon (EC) play a significant role in aerosol mass and atmospheric processes. This study is focused on the eastern part of the Great Northern Plains of India, namely the Brahmaputra Plains, to understand the influence of regional and local contribution on the carbonaceous fraction of PM2.5. Mean annual PM2.5 concentrations exceeded the National Ambient Air Quality Standards (NAAQS), with values of 46.6 ± 30.0 μg/m3 in the rural area and 50.4 ± 34.4 μg/m3 in the semi-urban area. The range in monsoon-winter was found to be 22.7–71.9 μg/m3. OC and EC contribute 44–50% of the PM2.5 mass concentration. The OC/EC ratios ranged from 3.3 to 9.3 in the rural area and from 4.3 to 6.9 in the semi-urban area, indicating significant secondary organic aerosol (SOA) formation, especially during the high photochemical period of the pre-monsoon season. Lower δ13C values were observed during winter (-27.5‰ rural, -27.3‰ semi-urban), pre-monsoon (-28.1‰ rural, -27.6‰ semi-urban), and post-monsoon (-28.2‰ rural, -28.1‰ semi-urban) periods, suggesting influences from biomass burning, fossil fuel combustion, and aged aerosols. The study employs cluster analysis of air mass trajectory, and Moderate Resolution Imaging Spectroradiometer (MODIS) fire data to determine the influence of the hotspot Indo-Gangetic Plain (IGP) and long-range transport on aerosol carbonaceous content during most seasons except the monsoon period June–September in the Brahmaputra Plains.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.