Carbonaceous aerosol in the Brahmaputra plains: Sources, and influence from the hotspot Indo-Gangetic plains, India

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
T. Paul, A. K. Sudheer, M. Gaddam, R. Pawar, A. S. Maurya, D. S. Jyethi
{"title":"Carbonaceous aerosol in the Brahmaputra plains: Sources, and influence from the hotspot Indo-Gangetic plains, India","authors":"T. Paul,&nbsp;A. K. Sudheer,&nbsp;M. Gaddam,&nbsp;R. Pawar,&nbsp;A. S. Maurya,&nbsp;D. S. Jyethi","doi":"10.1007/s10874-024-09464-z","DOIUrl":null,"url":null,"abstract":"<div><p>Organic carbon (OC) and elemental carbon (EC) play a significant role in aerosol mass and atmospheric processes. This study is focused on the eastern part of the Great Northern Plains of India, namely the Brahmaputra Plains, to understand the influence of regional and local contribution on the carbonaceous fraction of PM<sub>2.5</sub>. Mean annual PM<sub>2.5</sub> concentrations exceeded the National Ambient Air Quality Standards (NAAQS), with values of 46.6 ± 30.0 μg/m<sup>3</sup> in the rural area and 50.4 ± 34.4 μg/m<sup>3</sup> in the semi-urban area. The range in monsoon-winter was found to be 22.7–71.9 μg/m<sup>3</sup>. OC and EC contribute 44–50% of the PM<sub>2.5</sub> mass concentration. The OC/EC ratios ranged from 3.3 to 9.3 in the rural area and from 4.3 to 6.9 in the semi-urban area, indicating significant secondary organic aerosol (SOA) formation, especially during the high photochemical period of the pre-monsoon season. Lower δ13C values were observed during winter (-27.5‰ rural, -27.3‰ semi-urban), pre-monsoon (-28.1‰ rural, -27.6‰ semi-urban), and post-monsoon (-28.2‰ rural, -28.1‰ semi-urban) periods, suggesting influences from biomass burning, fossil fuel combustion, and aged aerosols. The study employs cluster analysis of air mass trajectory, and Moderate Resolution Imaging Spectroradiometer (MODIS) fire data to determine the influence of the hotspot Indo-Gangetic Plain (IGP) and long-range transport on aerosol carbonaceous content during most seasons except the monsoon period June–September in the Brahmaputra Plains.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"81 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-024-09464-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Organic carbon (OC) and elemental carbon (EC) play a significant role in aerosol mass and atmospheric processes. This study is focused on the eastern part of the Great Northern Plains of India, namely the Brahmaputra Plains, to understand the influence of regional and local contribution on the carbonaceous fraction of PM2.5. Mean annual PM2.5 concentrations exceeded the National Ambient Air Quality Standards (NAAQS), with values of 46.6 ± 30.0 μg/m3 in the rural area and 50.4 ± 34.4 μg/m3 in the semi-urban area. The range in monsoon-winter was found to be 22.7–71.9 μg/m3. OC and EC contribute 44–50% of the PM2.5 mass concentration. The OC/EC ratios ranged from 3.3 to 9.3 in the rural area and from 4.3 to 6.9 in the semi-urban area, indicating significant secondary organic aerosol (SOA) formation, especially during the high photochemical period of the pre-monsoon season. Lower δ13C values were observed during winter (-27.5‰ rural, -27.3‰ semi-urban), pre-monsoon (-28.1‰ rural, -27.6‰ semi-urban), and post-monsoon (-28.2‰ rural, -28.1‰ semi-urban) periods, suggesting influences from biomass burning, fossil fuel combustion, and aged aerosols. The study employs cluster analysis of air mass trajectory, and Moderate Resolution Imaging Spectroradiometer (MODIS) fire data to determine the influence of the hotspot Indo-Gangetic Plain (IGP) and long-range transport on aerosol carbonaceous content during most seasons except the monsoon period June–September in the Brahmaputra Plains.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信