Mechanical and morphological properties of cellulose nanocrystals extracted from industrial hemp agro-waste

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Jesse A. Heacock, Yu Sun, Yan Vivian Li
{"title":"Mechanical and morphological properties of cellulose nanocrystals extracted from industrial hemp agro-waste","authors":"Jesse A. Heacock,&nbsp;Yu Sun,&nbsp;Yan Vivian Li","doi":"10.1007/s10570-024-06255-3","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose nanocrystals (CNCs) were produced directly from hemp agro-waste (HAW) using ammonium persulfate (APS) oxidation. Industrial hemp growth in the US has been accompanied with HAW production. While hemp has previously been shown as a source for CNCs, studies on CNCs from HAW (specifically hemp hurd) have not been reported on. Furthermore, studies on the mechanical characteristics of individual CNCs extracted using APS are lacking. Herein, the one-step oxidation treatment was followed by a purification step to remove impurities and hence to colloidally stabilize CNCs in aqueous suspensions, then analysis of the morphological and mechanical properties was performed. Purified and unpurified CNC samples were compared for potential differences in morphological and mechanical properties. Morphological analysis was performed using atomic force microscopy (AFM): purified CNCs had an average length of 183.1 ± 73.9 nm, unpurified CNCs had an average length of 202.0 ± 79.2, and both samples had an average diameter of 4 ± 2 nm. Mechanical analysis of individual CNCs using force-distance spectroscopy (FDS) suggested both samples had little differences with average values of Young’s modulus 2.19 ± 0.15 GPa, maximum loading force of 6.29 ± 0.09 nN, and adhesion energy of 1.57 ± 1.12e-16 J. No statistical differences between purified and unpurified CNCs were found in Young’s modulus and maximum loading forces measurements, suggesting the impurities had minimum impact on mechanical strength. These results highlight the potential for mechanical assessment of individual CNCs extracted using APS from HAW via FDS and the need for further exploration into the methodology of this type of mechanical analysis.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 18","pages":"10861 - 10877"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06255-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose nanocrystals (CNCs) were produced directly from hemp agro-waste (HAW) using ammonium persulfate (APS) oxidation. Industrial hemp growth in the US has been accompanied with HAW production. While hemp has previously been shown as a source for CNCs, studies on CNCs from HAW (specifically hemp hurd) have not been reported on. Furthermore, studies on the mechanical characteristics of individual CNCs extracted using APS are lacking. Herein, the one-step oxidation treatment was followed by a purification step to remove impurities and hence to colloidally stabilize CNCs in aqueous suspensions, then analysis of the morphological and mechanical properties was performed. Purified and unpurified CNC samples were compared for potential differences in morphological and mechanical properties. Morphological analysis was performed using atomic force microscopy (AFM): purified CNCs had an average length of 183.1 ± 73.9 nm, unpurified CNCs had an average length of 202.0 ± 79.2, and both samples had an average diameter of 4 ± 2 nm. Mechanical analysis of individual CNCs using force-distance spectroscopy (FDS) suggested both samples had little differences with average values of Young’s modulus 2.19 ± 0.15 GPa, maximum loading force of 6.29 ± 0.09 nN, and adhesion energy of 1.57 ± 1.12e-16 J. No statistical differences between purified and unpurified CNCs were found in Young’s modulus and maximum loading forces measurements, suggesting the impurities had minimum impact on mechanical strength. These results highlight the potential for mechanical assessment of individual CNCs extracted using APS from HAW via FDS and the need for further exploration into the methodology of this type of mechanical analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信