{"title":"Galois Self-Dual 2-Quasi Constacyclic Codes Over Finite Fields","authors":"Yun Fan;Yue Leng","doi":"10.1109/TIT.2024.3475395","DOIUrl":null,"url":null,"abstract":"Let F be a field with cardinality \n<inline-formula> <tex-math>$p^{\\ell } $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$0\\neq \\lambda \\in F$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$0\\le h\\lt \\ell $ </tex-math></inline-formula>\n. Extending Euclidean and Hermitian inner products, Fan and Zhang introduced Galois \n<inline-formula> <tex-math>$p^{h}$ </tex-math></inline-formula>\n-inner product (DCC, vol.84, pp.473–492). In this paper, we characterize the structure of 2-quasi \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n-constacyclic codes over F; and exhibit necessary and sufficient conditions for 2-quasi \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n-constacyclic codes being Galois \n<inline-formula> <tex-math>$p^{h}$ </tex-math></inline-formula>\n-self-dual. With the help of a technique developed in this paper, we prove that, when \n<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>\n is even, the Hermitian self-dual 2-quasi \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n-constacyclic codes are asymptotically good if and only if \n<inline-formula> <tex-math>$\\lambda ^{1+p^{\\ell /2}}\\!=1$ </tex-math></inline-formula>\n. And, when \n<inline-formula> <tex-math>$p^{\\ell } \\,{\\cancel {\\equiv }}\\,3~({\\mathrm { mod}}~4)$ </tex-math></inline-formula>\n, the Euclidean self-dual 2-quasi \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n-constacyclic codes are asymptotically good if and only if \n<inline-formula> <tex-math>$\\lambda ^{2}=1$ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8698-8712"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706926/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Let F be a field with cardinality
$p^{\ell } $
and
$0\neq \lambda \in F$
, and
$0\le h\lt \ell $
. Extending Euclidean and Hermitian inner products, Fan and Zhang introduced Galois
$p^{h}$
-inner product (DCC, vol.84, pp.473–492). In this paper, we characterize the structure of 2-quasi
$\lambda $
-constacyclic codes over F; and exhibit necessary and sufficient conditions for 2-quasi
$\lambda $
-constacyclic codes being Galois
$p^{h}$
-self-dual. With the help of a technique developed in this paper, we prove that, when
$\ell $
is even, the Hermitian self-dual 2-quasi
$\lambda $
-constacyclic codes are asymptotically good if and only if
$\lambda ^{1+p^{\ell /2}}\!=1$
. And, when
$p^{\ell } \,{\cancel {\equiv }}\,3~({\mathrm { mod}}~4)$
, the Euclidean self-dual 2-quasi
$\lambda $
-constacyclic codes are asymptotically good if and only if
$\lambda ^{2}=1$
.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.