Vertical migration of bacteria bearing antibiotic resistance genes and heavy metal resistance genes through a soil profile as affected by manure

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
Junwei Liang, Yurou Han, Jian Zhao, Jiangjie He, Qizhong Huang, Yimo Zhang, Jizhen Liu, Yucheng Chen, Weihong Xu
{"title":"Vertical migration of bacteria bearing antibiotic resistance genes and heavy metal resistance genes through a soil profile as affected by manure","authors":"Junwei Liang, Yurou Han, Jian Zhao, Jiangjie He, Qizhong Huang, Yimo Zhang, Jizhen Liu, Yucheng Chen, Weihong Xu","doi":"10.1007/s00374-024-01878-x","DOIUrl":null,"url":null,"abstract":"<p>Untreated chicken manure causes a large amount of antibiotics and heavy metals to enter the soil environment. Currently, there is limited research on antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in soil profile. In this study, we conducted a preliminary investigation on the soil profile of vegetable field contaminated by chicken manure. The results showed that the absolute abundance of some resistance genes was higher at the 20–60 cm. Subsequently, we further analyzed the vertical migration of bacteria bearing ARGs and HMRGs through a soil profile as affected by manure using metagenomic sequencing. The findings revealed that long-term application of chicken manure significantly increased the alpha (α) diversity of the 0–20 cm soil layer ARGs and HMRGs, the plasmids relative abundance of soil profile substantially increased. Furthermore, long-term application of chicken manure changed the community composition of the 0–20 cm soil layer resistance genes, and also affected the community composition of the 20–40 cm soil layer with the increase of manure rates. Additionally, long-term application of chicken manure significantly increased the α diversity of the 0–20 cm soil layer bacteria. Structural equation modeling (SEM) further analysis revealed that bacterial relative abundance was the primary driving factor for the distribution of ARGs in vertical space, while mobile genetic elements (MGEs) were the main driving factor for HMRGs. This study strengthens our understanding of the vertical spatial distribution of soil resistance genes following long-term application of chicken manure, and also provides the basis for the management of subterranean environment.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"46 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01878-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Untreated chicken manure causes a large amount of antibiotics and heavy metals to enter the soil environment. Currently, there is limited research on antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in soil profile. In this study, we conducted a preliminary investigation on the soil profile of vegetable field contaminated by chicken manure. The results showed that the absolute abundance of some resistance genes was higher at the 20–60 cm. Subsequently, we further analyzed the vertical migration of bacteria bearing ARGs and HMRGs through a soil profile as affected by manure using metagenomic sequencing. The findings revealed that long-term application of chicken manure significantly increased the alpha (α) diversity of the 0–20 cm soil layer ARGs and HMRGs, the plasmids relative abundance of soil profile substantially increased. Furthermore, long-term application of chicken manure changed the community composition of the 0–20 cm soil layer resistance genes, and also affected the community composition of the 20–40 cm soil layer with the increase of manure rates. Additionally, long-term application of chicken manure significantly increased the α diversity of the 0–20 cm soil layer bacteria. Structural equation modeling (SEM) further analysis revealed that bacterial relative abundance was the primary driving factor for the distribution of ARGs in vertical space, while mobile genetic elements (MGEs) were the main driving factor for HMRGs. This study strengthens our understanding of the vertical spatial distribution of soil resistance genes following long-term application of chicken manure, and also provides the basis for the management of subterranean environment.

携带抗生素抗性基因和重金属抗性基因的细菌在受粪肥影响的土壤剖面中的垂直迁移
未经处理的鸡粪会导致大量抗生素和重金属进入土壤环境。目前,对土壤剖面中抗生素耐药基因(ARGs)和重金属耐药基因(HMRGs)的研究比较有限。本研究对鸡粪污染菜田土壤剖面进行了初步调查。结果表明,部分抗性基因的绝对丰度在20 ~ 60 cm处较高。随后,我们利用宏基因组测序进一步分析了携带ARGs和HMRGs的细菌在粪便影响下通过土壤剖面的垂直迁移。结果表明,长期施用鸡粪显著提高了0 ~ 20 cm土层ARGs和HMRGs的α (α)多样性,显著提高了土壤剖面质粒相对丰度。长期施用鸡粪改变了0 ~ 20 cm土层抗性基因的群落组成,并随着施鸡粪量的增加影响了20 ~ 40 cm土层的群落组成。长期施用鸡粪显著提高了0 ~ 20 cm土层细菌α多样性。结构方程模型(SEM)进一步分析表明,细菌相对丰度是垂直空间ARGs分布的主要驱动因素,而移动遗传因子(MGEs)是垂直空间ARGs分布的主要驱动因素。本研究增强了我们对长期施用鸡粪后土壤抗性基因垂直空间分布的认识,也为地下环境的管理提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信