Zhongqiang Hu, Zhiping He, Qiuyuan Wang, Chung-Tao Chou, Justin T. Hou, Luqiao Liu
{"title":"Nonlinear Magnetic Sensing with Hybrid Nitrogen-Vacancy/Magnon Systems","authors":"Zhongqiang Hu, Zhiping He, Qiuyuan Wang, Chung-Tao Chou, Justin T. Hou, Luqiao Liu","doi":"10.1021/acs.nanolett.4c04459","DOIUrl":null,"url":null,"abstract":"Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films. We studied the frequency mixing effect in the hybrid systems and demonstrated that the introduction of FM films not only amplifies the intensity of nonlinear resonance signals that are intrinsic to NV spins but also enables novel frequency mixing through parametric pumping and nonlinear magnon scattering effects. The discovery and understanding of the magnetic nonlinearities in hybrid NV/magnon systems position them as a prime candidate for magnetic sensing with a broad frequency range and high tunability, particularly meaningful for nanoscale, dynamical, and noninvasive materials characterization.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films. We studied the frequency mixing effect in the hybrid systems and demonstrated that the introduction of FM films not only amplifies the intensity of nonlinear resonance signals that are intrinsic to NV spins but also enables novel frequency mixing through parametric pumping and nonlinear magnon scattering effects. The discovery and understanding of the magnetic nonlinearities in hybrid NV/magnon systems position them as a prime candidate for magnetic sensing with a broad frequency range and high tunability, particularly meaningful for nanoscale, dynamical, and noninvasive materials characterization.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.