Fuel architecture influences interspecific variation in shoot flammability, but not as much as leaf traits

IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY
Md Azharul Alam, Sarah V. Wyse, Hannah L. Buckley, George L. W. Perry, Xinglei Cui, Jon J. Sullivan, Dylan W. Schwilk, Timothy J. Curran
{"title":"Fuel architecture influences interspecific variation in shoot flammability, but not as much as leaf traits","authors":"Md Azharul Alam, Sarah V. Wyse, Hannah L. Buckley, George L. W. Perry, Xinglei Cui, Jon J. Sullivan, Dylan W. Schwilk, Timothy J. Curran","doi":"10.1111/1365-2745.14450","DOIUrl":null,"url":null,"abstract":"<jats:list> <jats:list-item>Plant flammability is strongly influenced by functional traits, meaning that the quantitative measurement of trait–flammability relationships is key to understanding why some species burn better than others. While relationships between flammability and leaf traits are well‐studied, the role of architectural traits has rarely been assessed. Shoots preserve some of the architecture of plants; therefore, shoot‐level trait–flammability relationships offer great promise for determining the relative influence of fuel architecture and leaf traits on flammability.</jats:list-item> <jats:list-item>We quantified plant flammability by burning 70‐cm‐long shoot samples from 65 species of indigenous and exotic New Zealand trees and shrubs and measured a range of leaf and fuel architectural traits on the same individuals. The influence of species' evolutionary history on flammability variation was also quantified.</jats:list-item> <jats:list-item>Most of the variation in flammability and functional traits was explained by between‐species differences. No significant phylogenetic signal was detected for the flammability variables measured in this study. Fuel architecture influenced shoot flammability, and along with leaf traits, explained a high proportion (41%–54%) of flammability variation. Branching patterns (number of ramifications and sub‐branches) was the key architectural trait that was strongly positively correlated with flammability. Other architectural traits, such as foliage and twig fraction mass, and fuel bulk density were also significantly associated with some flammability variables. Leaf dry matter content (LDMC; positive relationship) and leaf thickness (negative relationship) were the leaf traits most strongly correlated with shoot flammability.</jats:list-item> <jats:list-item><jats:italic>Synthesis</jats:italic>. Our study addresses a key knowledge gap by demonstrating the influence of fuel architecture on shoot flammability and improves our understanding of why species with certain architecture (e.g. highly branched) burn better than others. However, leaf traits such as leaf dry matter content (LDMC) and leaf thickness emerged as having a relatively stronger influence on flammability than architectural traits. Where available, traits such as LDMC, leaf thickness and branching pattern can be effective surrogates of plant flammability and can be used to improve global dynamic vegetation models and fire behaviour models. However, several architectural traits are time‐consuming to measure, so where they are not available, it will be quicker to simply measure shoot flammability.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"197 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2745.14450","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant flammability is strongly influenced by functional traits, meaning that the quantitative measurement of trait–flammability relationships is key to understanding why some species burn better than others. While relationships between flammability and leaf traits are well‐studied, the role of architectural traits has rarely been assessed. Shoots preserve some of the architecture of plants; therefore, shoot‐level trait–flammability relationships offer great promise for determining the relative influence of fuel architecture and leaf traits on flammability. We quantified plant flammability by burning 70‐cm‐long shoot samples from 65 species of indigenous and exotic New Zealand trees and shrubs and measured a range of leaf and fuel architectural traits on the same individuals. The influence of species' evolutionary history on flammability variation was also quantified. Most of the variation in flammability and functional traits was explained by between‐species differences. No significant phylogenetic signal was detected for the flammability variables measured in this study. Fuel architecture influenced shoot flammability, and along with leaf traits, explained a high proportion (41%–54%) of flammability variation. Branching patterns (number of ramifications and sub‐branches) was the key architectural trait that was strongly positively correlated with flammability. Other architectural traits, such as foliage and twig fraction mass, and fuel bulk density were also significantly associated with some flammability variables. Leaf dry matter content (LDMC; positive relationship) and leaf thickness (negative relationship) were the leaf traits most strongly correlated with shoot flammability. Synthesis. Our study addresses a key knowledge gap by demonstrating the influence of fuel architecture on shoot flammability and improves our understanding of why species with certain architecture (e.g. highly branched) burn better than others. However, leaf traits such as leaf dry matter content (LDMC) and leaf thickness emerged as having a relatively stronger influence on flammability than architectural traits. Where available, traits such as LDMC, leaf thickness and branching pattern can be effective surrogates of plant flammability and can be used to improve global dynamic vegetation models and fire behaviour models. However, several architectural traits are time‐consuming to measure, so where they are not available, it will be quicker to simply measure shoot flammability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ecology
Journal of Ecology 环境科学-生态学
CiteScore
10.90
自引率
5.50%
发文量
207
审稿时长
3.0 months
期刊介绍: Journal of Ecology publishes original research papers on all aspects of the ecology of plants (including algae), in both aquatic and terrestrial ecosystems. We do not publish papers concerned solely with cultivated plants and agricultural ecosystems. Studies of plant communities, populations or individual species are accepted, as well as studies of the interactions between plants and animals, fungi or bacteria, providing they focus on the ecology of the plants. We aim to bring important work using any ecological approach (including molecular techniques) to a wide international audience and therefore only publish papers with strong and ecological messages that advance our understanding of ecological principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信