Extracting work from coherence in a two-mode Bose–Einstein condensate

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
L A Williamson, F Cerisola, J Anders and Matthew J Davis
{"title":"Extracting work from coherence in a two-mode Bose–Einstein condensate","authors":"L A Williamson, F Cerisola, J Anders and Matthew J Davis","doi":"10.1088/2058-9565/ad8fc9","DOIUrl":null,"url":null,"abstract":"We show how work can be extracted from number-state coherence in a two-mode Bose–Einstein condensate. With careful tuning of parameters, a sequence of thermodynamically reversible steps transforms a Glauber coherent state into a thermal state with the same energy probability distribution. The work extracted during this process arises entirely from the removal of quantum coherence. More generally, we characterise quantum (from coherence) and classical (remaining) contributions to work output, and find that in this system the quantum contribution can be dominant over a broad range of parameters. The proportion of quantum work output can be further enhanced by squeezing the initial state. Due to the many-body nature of the system, the work from coherence can equivalently be understood as work from entanglement.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad8fc9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We show how work can be extracted from number-state coherence in a two-mode Bose–Einstein condensate. With careful tuning of parameters, a sequence of thermodynamically reversible steps transforms a Glauber coherent state into a thermal state with the same energy probability distribution. The work extracted during this process arises entirely from the removal of quantum coherence. More generally, we characterise quantum (from coherence) and classical (remaining) contributions to work output, and find that in this system the quantum contribution can be dominant over a broad range of parameters. The proportion of quantum work output can be further enhanced by squeezing the initial state. Due to the many-body nature of the system, the work from coherence can equivalently be understood as work from entanglement.
从双模玻色-爱因斯坦凝聚中提取相干功
我们展示了如何从双模玻色-爱因斯坦凝聚中的数字态相干中提取功。通过仔细调整参数,一系列热力学可逆步骤将格劳伯相干态转变为具有相同能量概率分布的热态。在此过程中提取的功完全来自于量子相干性的去除。更一般地说,我们描述了量子(从相干性)和经典(剩余)对工作输出的贡献,并发现在这个系统中,量子贡献可以在广泛的参数范围内占主导地位。通过压缩初始态,可以进一步提高量子功输出的比例。由于系统的多体性质,相干的功可以等效地理解为纠缠的功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信