Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap

IF 11.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xingyu Wu;Sheng-Hao Wu;Jibin Wu;Liang Feng;Kay Chen Tan
{"title":"Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap","authors":"Xingyu Wu;Sheng-Hao Wu;Jibin Wu;Liang Feng;Kay Chen Tan","doi":"10.1109/TEVC.2024.3506731","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride toward artificial general intelligence. The interplay between LLMs and evolutionary algorithms (EAs), despite differing in objectives and methodologies, share a common pursuit of applicability in complex problems. Meanwhile, EA can provide an optimization framework for LLM’s further enhancement under closed box settings, empowering LLM with flexible global search capacities. On the other hand, the abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches. Furthermore, the text processing and generative capabilities of LLMs would aid in deploying EAs across a wide range of tasks. Based on these complementary advantages, this article provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues: 1) LLM-enhanced EA and 2) EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the complementarity between LLMs and EAs in diverse scenarios, including code generation, software engineering, neural architecture search, and various generation tasks. As the first comprehensive review focused on the EA research in the era of LLMs, this article provides a foundational stepping stone for understanding the collaborative potential of LLMs and EAs. The identified challenges and future directions offer guidance for researchers and practitioners to unlock the full potential of this innovative collaboration in propelling advancements in optimization and artificial intelligence. We have created a GitHub repository to index the relevant papers: <uri>https://github.com/wuxingyu-ai/LLM4EC</uri>.","PeriodicalId":13206,"journal":{"name":"IEEE Transactions on Evolutionary Computation","volume":"29 2","pages":"534-554"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767756/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride toward artificial general intelligence. The interplay between LLMs and evolutionary algorithms (EAs), despite differing in objectives and methodologies, share a common pursuit of applicability in complex problems. Meanwhile, EA can provide an optimization framework for LLM’s further enhancement under closed box settings, empowering LLM with flexible global search capacities. On the other hand, the abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches. Furthermore, the text processing and generative capabilities of LLMs would aid in deploying EAs across a wide range of tasks. Based on these complementary advantages, this article provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues: 1) LLM-enhanced EA and 2) EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the complementarity between LLMs and EAs in diverse scenarios, including code generation, software engineering, neural architecture search, and various generation tasks. As the first comprehensive review focused on the EA research in the era of LLMs, this article provides a foundational stepping stone for understanding the collaborative potential of LLMs and EAs. The identified challenges and future directions offer guidance for researchers and practitioners to unlock the full potential of this innovative collaboration in propelling advancements in optimization and artificial intelligence. We have created a GitHub repository to index the relevant papers: https://github.com/wuxingyu-ai/LLM4EC.
大语言模型时代的进化计算:综述与路线图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Evolutionary Computation
IEEE Transactions on Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
21.90
自引率
9.80%
发文量
196
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on Evolutionary Computation is published by the IEEE Computational Intelligence Society on behalf of 13 societies: Circuits and Systems; Computer; Control Systems; Engineering in Medicine and Biology; Industrial Electronics; Industry Applications; Lasers and Electro-Optics; Oceanic Engineering; Power Engineering; Robotics and Automation; Signal Processing; Social Implications of Technology; and Systems, Man, and Cybernetics. The journal publishes original papers in evolutionary computation and related areas such as nature-inspired algorithms, population-based methods, optimization, and hybrid systems. It welcomes both purely theoretical papers and application papers that provide general insights into these areas of computation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信