{"title":"Electric field control of piezoelectricity in textured PMN-PZT ceramics","authors":"Mingyang Tang, Xin Liu, Shuguang Zheng, Yike Wang, Jingheng Chai, Xiaodan Ren, Yunjie Zhao, Zheng Yang, Zhuo Xu, Liwei D. Geng, Yongke Yan","doi":"10.1016/j.jmst.2024.10.043","DOIUrl":null,"url":null,"abstract":"Ferroelectric ceramics generally develop macroscopic piezoelectric effects only after undergoing suitable electric field treatment, referred to as poling. In this study, we examine the influence of various poling conditions, including both direct current (DC) and alternative current (AC) electric fields, as well as temperature, on the piezoelectric properties of [001]-textured PMN-PZT ceramics. The results show that the piezoelectric properties under alternative current poling (ACP) condition include <em>d</em><sub>33</sub> = 1330 pC/N, <em>ɛ</em><sub>r</sub> = 3280, and <em>k</em><sub>31</sub> = 0.646. ACP shows a 9% increase in <em>d</em><sub>33</sub> compared to direct current poling (DCP). Increasing the temperature during DCP can raise <em>d</em><sub>33</sub> to 1350 pC/N and <em>k</em><sub>31</sub> to 0.66, with a high <em>T</em><sub>R−T</sub> of 121°C. Due to the influence of grain boundaries, there is a significant difference between [001] textured ceramics and single crystals, as the domain structure switching and growth are constrained by orientation differences between grains. Phase-field simulations further reveal that the growth of domains is impeded by grain boundaries in polycrystals, which hinders the formation of larger-size domains. The results suggest that ACP may be more effective in larger grains in textured ceramics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"84 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroelectric ceramics generally develop macroscopic piezoelectric effects only after undergoing suitable electric field treatment, referred to as poling. In this study, we examine the influence of various poling conditions, including both direct current (DC) and alternative current (AC) electric fields, as well as temperature, on the piezoelectric properties of [001]-textured PMN-PZT ceramics. The results show that the piezoelectric properties under alternative current poling (ACP) condition include d33 = 1330 pC/N, ɛr = 3280, and k31 = 0.646. ACP shows a 9% increase in d33 compared to direct current poling (DCP). Increasing the temperature during DCP can raise d33 to 1350 pC/N and k31 to 0.66, with a high TR−T of 121°C. Due to the influence of grain boundaries, there is a significant difference between [001] textured ceramics and single crystals, as the domain structure switching and growth are constrained by orientation differences between grains. Phase-field simulations further reveal that the growth of domains is impeded by grain boundaries in polycrystals, which hinders the formation of larger-size domains. The results suggest that ACP may be more effective in larger grains in textured ceramics.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.