Enhanced corrosion resistance of AZ31 magnesium alloys through the use of high-purity raw magnesium

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Xin-Yu Peng, De-Gang Xie, Long-Qi Bai, Zhang Liu, Zhi-Wei Shan
{"title":"Enhanced corrosion resistance of AZ31 magnesium alloys through the use of high-purity raw magnesium","authors":"Xin-Yu Peng, De-Gang Xie, Long-Qi Bai, Zhang Liu, Zhi-Wei Shan","doi":"10.1016/j.jma.2024.10.018","DOIUrl":null,"url":null,"abstract":"Poor corrosion resistance is a critical barrier to the widespread application of magnesium alloys. Statistically, the literature reported that approximately 70 % of as-cast AZ31 magnesium alloys exhibit corrosion rates exceeding 1 mm ·<em>y</em><sup>−1</sup> in 3.5 wt.% NaCl solution, which is unacceptable for industrial use. Furthermore, there is a considerable discrepancy in the corrosion rates reported by different studies (as-cast alloys ranging from 0.4 to 215 mm ·<em>y</em><sup>−1</sup>). These phenomena may be attributed to the uncontrollable content of impurity elements in commercial magnesium alloys, which fluctuate widely between batches. In the present work, we prepared as-cast AZ31 magnesium alloys with different impurity contents using two different purities of raw magnesium (Mg-99.9% and Mg-99.99%). The impact of impurity contents on the corrosion resistance of AZ31 magnesium alloys was then analyzed. The AZ31 magnesium alloy prepared with 99.99% raw magnesium showed superior corrosion resistance compared with that prepared with 99.9% raw magnesium, with a reduction in corrosion rate by approximately 98 % and a decrease in the fluctuation range of corrosion rate by 91 %. Thus, enhancing the purity of raw magnesium is an effective method to improve both the corrosion resistance and consistency of magnesium alloys.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"69 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.10.018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Poor corrosion resistance is a critical barrier to the widespread application of magnesium alloys. Statistically, the literature reported that approximately 70 % of as-cast AZ31 magnesium alloys exhibit corrosion rates exceeding 1 mm ·y−1 in 3.5 wt.% NaCl solution, which is unacceptable for industrial use. Furthermore, there is a considerable discrepancy in the corrosion rates reported by different studies (as-cast alloys ranging from 0.4 to 215 mm ·y−1). These phenomena may be attributed to the uncontrollable content of impurity elements in commercial magnesium alloys, which fluctuate widely between batches. In the present work, we prepared as-cast AZ31 magnesium alloys with different impurity contents using two different purities of raw magnesium (Mg-99.9% and Mg-99.99%). The impact of impurity contents on the corrosion resistance of AZ31 magnesium alloys was then analyzed. The AZ31 magnesium alloy prepared with 99.99% raw magnesium showed superior corrosion resistance compared with that prepared with 99.9% raw magnesium, with a reduction in corrosion rate by approximately 98 % and a decrease in the fluctuation range of corrosion rate by 91 %. Thus, enhancing the purity of raw magnesium is an effective method to improve both the corrosion resistance and consistency of magnesium alloys.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信