Doping Ti into RuO2 to Accelerate Bridged-Oxygen-Assisted Deprotonation for Acidic Oxygen Evolution Reaction

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Hu, Bolong Huang, Mingzi Sun, Jing Du, Yang Hai, Wen Yin, Xiaomei Wang, Wensheng Gao, Chunyang Zhao, Ya Yue, Zelong Li, Can Li
{"title":"Doping Ti into RuO2 to Accelerate Bridged-Oxygen-Assisted Deprotonation for Acidic Oxygen Evolution Reaction","authors":"Wei Hu,&nbsp;Bolong Huang,&nbsp;Mingzi Sun,&nbsp;Jing Du,&nbsp;Yang Hai,&nbsp;Wen Yin,&nbsp;Xiaomei Wang,&nbsp;Wensheng Gao,&nbsp;Chunyang Zhao,&nbsp;Ya Yue,&nbsp;Zelong Li,&nbsp;Can Li","doi":"10.1002/adma.202411709","DOIUrl":null,"url":null,"abstract":"<p>The development of efficient and durable electrocatalysts for the acidic oxygen evolution reaction (OER) is essential for advancing renewable hydrogen energy technology. However, the slow deprotonation kinetics of oxo-intermediates, involving the four proton-coupled electron steps, hinder the acidic OER progress. Herein, a RuTiO<sub>x</sub> solid solution electrocatalyst is investigated, which features bridged oxygen (O<sub>bri</sub>) sites that act as proton acceptors, accelerating the deprotonation of oxo-intermediates. Electrochemical tests, infrared spectroscopy, and density functional theory results reveal that the moderate proton adsorption energy on O<sub>bri</sub> sites facilitates fast deprotonation kinetics through the adsorbate evolution mechanism. This process effectively prevents the over-oxidation and deactivation of Ru sites caused by the lattice oxygen mechanism. Consequently, RuTiO<sub>x</sub> shows a low overpotential of 198 mV at 10 mA cm<sup>−2</sup><sub>geo</sub> and performance exceeding 1400 h at 50 mA cm<sup>−2</sup><sub>geo</sub> with negligible deactivation. These insights into the OER mechanism and the structure-function relationship are crucial for the advancement of catalytic systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 3","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202411709","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and durable electrocatalysts for the acidic oxygen evolution reaction (OER) is essential for advancing renewable hydrogen energy technology. However, the slow deprotonation kinetics of oxo-intermediates, involving the four proton-coupled electron steps, hinder the acidic OER progress. Herein, a RuTiOx solid solution electrocatalyst is investigated, which features bridged oxygen (Obri) sites that act as proton acceptors, accelerating the deprotonation of oxo-intermediates. Electrochemical tests, infrared spectroscopy, and density functional theory results reveal that the moderate proton adsorption energy on Obri sites facilitates fast deprotonation kinetics through the adsorbate evolution mechanism. This process effectively prevents the over-oxidation and deactivation of Ru sites caused by the lattice oxygen mechanism. Consequently, RuTiOx shows a low overpotential of 198 mV at 10 mA cm−2geo and performance exceeding 1400 h at 50 mA cm−2geo with negligible deactivation. These insights into the OER mechanism and the structure-function relationship are crucial for the advancement of catalytic systems.

Abstract Image

Abstract Image

在RuO2中掺杂Ti加速桥氧辅助脱质子酸析氧反应
开发高效、耐用的酸性析氧反应电催化剂是推进可再生氢能源技术的关键。然而,含氧中间体的缓慢去质子化动力学,包括四个质子耦合电子步骤,阻碍了酸性OER的进展。本文研究了一种RuTiOx固溶体电催化剂,其特征是桥接氧(obi)位点作为质子受体,加速氧中间体的去质子化。电化学测试、红外光谱和密度泛函数理论结果表明,质子在obi位点上的适度吸附能通过吸附物的演化机制促进了快速去质子化动力学。该工艺有效地防止了晶格氧机制引起的Ru位点的过度氧化和失活。因此,RuTiOx在10 mA cm - 2geo下表现出198 mV的低过电位,在50 mA cm - 2geo下表现出超过1400小时的性能,几乎没有失活。这些对OER机理和结构-功能关系的深入了解对催化体系的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信