Natural Boosting and the Immunogenicity of the XBB.1.5 Monovalent Vaccine in the Coronavirus Disease 2019 Endemic Era: A Longitudinal Observational Study

Hyun Myung Kang, Hye-Jin Kim, Jiwon Jung, Jin Young Ahn, Kyoung-Ho Song, Jin Yang Baek, Ju-yeon Choi, Young Jae Lee, Hyeonji Jeong, Su-Hwan Kim, Soyoung Park, Hye Min Jang, Gi-eun Rhie, Eu Suk Kim, Jun Yong Choi, Sung-Han Kim, Eun-Suk Kang, Kyong Ran Peck, Hye Won Jeong, Jae-Hoon Ko
{"title":"Natural Boosting and the Immunogenicity of the XBB.1.5 Monovalent Vaccine in the Coronavirus Disease 2019 Endemic Era: A Longitudinal Observational Study","authors":"Hyun Myung Kang, Hye-Jin Kim, Jiwon Jung, Jin Young Ahn, Kyoung-Ho Song, Jin Yang Baek, Ju-yeon Choi, Young Jae Lee, Hyeonji Jeong, Su-Hwan Kim, Soyoung Park, Hye Min Jang, Gi-eun Rhie, Eu Suk Kim, Jun Yong Choi, Sung-Han Kim, Eun-Suk Kang, Kyong Ran Peck, Hye Won Jeong, Jae-Hoon Ko","doi":"10.1093/infdis/jiae536","DOIUrl":null,"url":null,"abstract":"Background With the transition from the coronavirus disease 2019 (COVID-19) pandemic into endemicity, changes in group immunity and the effect of updated XBB.1.5 monovalent vaccine (MonoV) need to be investigated. Methods A multicenter vaccine cohort was followed for 3 years, and the investigation period was classified into the pre-Omicron, Omicron, and endemic eras. Thirteen sampling points were assessed, including pre- and post-MonoV administration. Specimens were classified as vaccinated, molecularly or serologically diagnosed breakthrough infection (BI), natural boosting (NB), or waned. Results A total of 327 healthcare workers contributed 2645 blood samples from March 2021 to December 2023. The log10 anti-spike protein antibody (SAb) levels, elevated by vaccination, declined linearly in the pre-Omicron era, were maintained during the Omicron era due to BIs, and increased in the endemic era (slope = 0.02, P = .02) without additional vaccination. NB cases increased significantly across the epidemiologic eras. The incidence rate ratios were 2.72 (P < .001) for Omicron/pre-Omicron and 3.39 (P < .001) for endemic/Omicron. Plaque reduction neutralization test (PRNT) titers against circulating strains (XBB.1.5 and XBB.1.9.1) in the NB group maintained previous levels, but ratios to wild-type PRNT and fold changes exhibited significantly enhanced activity. The XBB.1.5 MonoV increased PRNT by 5.8-fold against XBB.1.5 and 6.6-fold against JN.1, showing stronger enhancement against subsequent epidemic strains than the bivalent vaccine. Conclusions Group immunity in the COVID-19 endemic era exhibited maintained SAb levels and adjusted neutralizing activities through BI and NB. The XBB.1.5 MonoV significantly enhanced neutralizing activity against the vaccine strain and robust immunity against the subsequent epidemic JN.1 strain.","PeriodicalId":501010,"journal":{"name":"The Journal of Infectious Diseases","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/infdis/jiae536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background With the transition from the coronavirus disease 2019 (COVID-19) pandemic into endemicity, changes in group immunity and the effect of updated XBB.1.5 monovalent vaccine (MonoV) need to be investigated. Methods A multicenter vaccine cohort was followed for 3 years, and the investigation period was classified into the pre-Omicron, Omicron, and endemic eras. Thirteen sampling points were assessed, including pre- and post-MonoV administration. Specimens were classified as vaccinated, molecularly or serologically diagnosed breakthrough infection (BI), natural boosting (NB), or waned. Results A total of 327 healthcare workers contributed 2645 blood samples from March 2021 to December 2023. The log10 anti-spike protein antibody (SAb) levels, elevated by vaccination, declined linearly in the pre-Omicron era, were maintained during the Omicron era due to BIs, and increased in the endemic era (slope = 0.02, P = .02) without additional vaccination. NB cases increased significantly across the epidemiologic eras. The incidence rate ratios were 2.72 (P < .001) for Omicron/pre-Omicron and 3.39 (P < .001) for endemic/Omicron. Plaque reduction neutralization test (PRNT) titers against circulating strains (XBB.1.5 and XBB.1.9.1) in the NB group maintained previous levels, but ratios to wild-type PRNT and fold changes exhibited significantly enhanced activity. The XBB.1.5 MonoV increased PRNT by 5.8-fold against XBB.1.5 and 6.6-fold against JN.1, showing stronger enhancement against subsequent epidemic strains than the bivalent vaccine. Conclusions Group immunity in the COVID-19 endemic era exhibited maintained SAb levels and adjusted neutralizing activities through BI and NB. The XBB.1.5 MonoV significantly enhanced neutralizing activity against the vaccine strain and robust immunity against the subsequent epidemic JN.1 strain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信