Christopher Doerrer, Xiangwen Gao, Junfu Bu, Samuel Wheeler, Mauro Pasta, Peter G. Bruce, Patrick S. Grant
{"title":"Fast-charging all-solid-state battery cathodes with long cycle life","authors":"Christopher Doerrer, Xiangwen Gao, Junfu Bu, Samuel Wheeler, Mauro Pasta, Peter G. Bruce, Patrick S. Grant","doi":"10.1016/j.nanoen.2024.110531","DOIUrl":null,"url":null,"abstract":"Many battery applications target fast charging to achieve an 80% rise in state of charge (SOC) in <em><</em>15<!-- --> <!-- -->min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80% SOC while retaining a high specific energy of 400<!-- --> <!-- -->W<!-- --> <!-- -->h <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\" is=\"true\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi></mrow><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo><mn is=\"true\">1</mn></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.125ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -945.9 2151.5 1345.3\" width=\"4.997ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6B\"></use></g><g is=\"true\" transform=\"translate(528,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-67\"></use></g></g><g is=\"true\" transform=\"translate(500,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(500,-328)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-63\"></use><use transform=\"scale(0.707)\" x=\"444\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"889\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1167\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi></mrow><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></script></span>. We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li- Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup><em>−</em>2</sup>, a specific capacity of 150<!-- --> <!-- -->mA<!-- --> <!-- -->h g<sup><em>−</em>1</sup> was achieved in <em>∼</em>8<!-- --> <!-- -->min, with 81% capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210<!-- --> <!-- -->µm thick cathode was able to be charged at an extraordinary current density of 50<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup><em>−</em>2</sup> to reach an areal capacity of 8<!-- --> <!-- -->mA<!-- --> <!-- -->h cm<sup><em>−</em>2</sup> in only 10<!-- --> <!-- -->min, suggesting practical cathodes for SSBs with 400<!-- --> <!-- -->W<!-- --> <!-- -->h <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\" is=\"true\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi></mrow><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo><mn is=\"true\">1</mn></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.125ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -945.9 2151.5 1345.3\" width=\"4.997ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6B\"></use></g><g is=\"true\" transform=\"translate(528,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-67\"></use></g></g><g is=\"true\" transform=\"translate(500,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(500,-328)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-63\"></use><use transform=\"scale(0.707)\" x=\"444\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"889\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1167\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\" mathvariant=\"normal\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><mi mathvariant=\"normal\" is=\"true\">k</mi><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi></mrow><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">cell</mi></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msubsup></math></script></span> may be within reach.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"46 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Many battery applications target fast charging to achieve an 80% rise in state of charge (SOC) in <15 min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80% SOC while retaining a high specific energy of 400 W h . We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li- Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15 mA cm−2, a specific capacity of 150 mA h g−1 was achieved in ∼8 min, with 81% capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210 µm thick cathode was able to be charged at an extraordinary current density of 50 mA cm−2 to reach an areal capacity of 8 mA h cm−2 in only 10 min, suggesting practical cathodes for SSBs with 400 W h may be within reach.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.