Transition metal transporting P-type ATPases: terminal metal-binding domains serve as sensors for autoinhibitory tails.

Qiaoxia Hu, Oleg Sitsel, Viktoria Bågenholm, Christina Grønberg, Pin Lyu, Anna Sigrid Pii Svane, Kasper Røjkjær Andersen, Nick Stub Laursen, Gabriele Meloni, Poul Nissen, Dennis W Juhl, Jakob Toudahl Nielsen, Niels Chr Nielsen, Pontus Gourdon
{"title":"Transition metal transporting P-type ATPases: terminal metal-binding domains serve as sensors for autoinhibitory tails.","authors":"Qiaoxia Hu, Oleg Sitsel, Viktoria Bågenholm, Christina Grønberg, Pin Lyu, Anna Sigrid Pii Svane, Kasper Røjkjær Andersen, Nick Stub Laursen, Gabriele Meloni, Poul Nissen, Dennis W Juhl, Jakob Toudahl Nielsen, Niels Chr Nielsen, Pontus Gourdon","doi":"10.1111/febs.17330","DOIUrl":null,"url":null,"abstract":"<p><p>Copper is an essential micronutrient and yet is highly toxic to cells at elevated concentrations. P<sub>1B</sub>-ATPase proteins are critical for this regulation, providing active extrusion across cellular membranes. One unique molecular adaptation of P<sub>1B</sub>-ATPases compared to other P-type ATPases is the presence of metal-binding domains (MBDs) at the cytosolic termini, which however are poorly characterized with an elusive mechanistic role. Here we present the MBD architecture in metal-free and metal-bound forms of the archetype Cu<sup>+</sup>-specific P<sub>1B</sub>-ATPase LpCopA, determined using NMR. The MBD is composed of a flexible tail and a structured core with a metal ion binding site defined by three sulfur atoms, one of which is pertinent to the so-called CXXC motif. Furthermore, we demonstrate that the MBD rather than being involved in ion delivery likely serves a regulatory role, which is dependent on the classical P-type ATPase E1-E2 transport mechanism. Specifically, the flexible tail appears responsible for autoinhibition while the metal-binding core is used for copper sensing. This model is validated by a conformation-sensitive and MBD-targeting nanobody that can structurally and functionally replace the flexible tail. We propose that autoinhibition of Cu<sup>+</sup>-ATPases occurs at low copper conditions via MBD-mediated interference with the soluble domains of the ATPase core and that metal transport is enabled when copper levels rise, through metal-induced dissociation of the MBD. This allows P<sub>1B</sub>-ATPase 'vacuum cleaners' to tune their own activity, balancing the levels of critical micronutrients in the cells.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Copper is an essential micronutrient and yet is highly toxic to cells at elevated concentrations. P1B-ATPase proteins are critical for this regulation, providing active extrusion across cellular membranes. One unique molecular adaptation of P1B-ATPases compared to other P-type ATPases is the presence of metal-binding domains (MBDs) at the cytosolic termini, which however are poorly characterized with an elusive mechanistic role. Here we present the MBD architecture in metal-free and metal-bound forms of the archetype Cu+-specific P1B-ATPase LpCopA, determined using NMR. The MBD is composed of a flexible tail and a structured core with a metal ion binding site defined by three sulfur atoms, one of which is pertinent to the so-called CXXC motif. Furthermore, we demonstrate that the MBD rather than being involved in ion delivery likely serves a regulatory role, which is dependent on the classical P-type ATPase E1-E2 transport mechanism. Specifically, the flexible tail appears responsible for autoinhibition while the metal-binding core is used for copper sensing. This model is validated by a conformation-sensitive and MBD-targeting nanobody that can structurally and functionally replace the flexible tail. We propose that autoinhibition of Cu+-ATPases occurs at low copper conditions via MBD-mediated interference with the soluble domains of the ATPase core and that metal transport is enabled when copper levels rise, through metal-induced dissociation of the MBD. This allows P1B-ATPase 'vacuum cleaners' to tune their own activity, balancing the levels of critical micronutrients in the cells.

传递p型atp酶的过渡金属:末端金属结合域作为自抑制尾部的传感器。
铜是一种必需的微量营养素,但浓度过高时对细胞有很高的毒性。p1b - atp酶蛋白对这种调节至关重要,提供跨细胞膜的主动挤压。与其他p型atp酶相比,p1b - atp酶的一个独特分子适应性是在细胞质末端存在金属结合结构域(MBDs),但其机制作用尚不清楚。在这里,我们展示了无金属和金属结合形式的原型Cu+特异性p1b - atp酶LpCopA的MBD结构,使用核磁共振测定。MBD由一个柔性的尾部和一个结构核心组成,核心上有一个由三个硫原子定义的金属离子结合位点,其中一个与所谓的CXXC基序有关。此外,我们证明MBD不是参与离子传递,而是发挥调节作用,这取决于经典的p型atp酶E1-E2转运机制。具体来说,柔性尾部似乎负责自抑制,而金属结合核心用于铜感应。该模型被构象敏感和靶向mbd的纳米体验证,该纳米体可以在结构和功能上取代柔性尾巴。我们提出在低铜条件下,通过MBD介导的对atp酶核心可溶性结构域的干扰,Cu+- atp酶发生自抑制,而当铜水平升高时,通过金属诱导的MBD解离,金属运输得以实现。这使得p1b - atp酶“真空吸尘器”可以调整自己的活动,平衡细胞中关键微量营养素的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信