Opposed Aromatic Surfaces Behave as Independent Binding Sites for Carbohydrate Stacking: Analysis of Sandwich-like CH/π/CH Complexes.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2024-10-14 eCollection Date: 2024-11-25 DOI:10.1021/jacsau.4c00795
Laura Díaz-Casado, Enrique Mann, Ester Jiménez-Moreno, Alejandro Villacampa, Laura Montalvillo-Jiménez, Claudia Sánchez-García, Francisco Corzana, Jesús Jiménez-Barbero, Ana María Gómez, Andrés G Santana, Juan Luis Asensio
{"title":"Opposed Aromatic Surfaces Behave as Independent Binding Sites for Carbohydrate Stacking: Analysis of Sandwich-like CH/π/CH Complexes.","authors":"Laura Díaz-Casado, Enrique Mann, Ester Jiménez-Moreno, Alejandro Villacampa, Laura Montalvillo-Jiménez, Claudia Sánchez-García, Francisco Corzana, Jesús Jiménez-Barbero, Ana María Gómez, Andrés G Santana, Juan Luis Asensio","doi":"10.1021/jacsau.4c00795","DOIUrl":null,"url":null,"abstract":"<p><p>CH/π bonds are versatile elements for the construction of complex molecular architectures, thus playing key roles in many biomolecular recognition processes. Although seldom acknowledged, aromatic units are inherently bivalent and can participate in CH/π bonds through either face simultaneously, leading to the formation of <i>ternary</i> stacking complexes. This sandwich-like arrangement is by far the most common in natural complexes and could potentially lead to negative cooperativity due to unfavorable polarization or electrostatic effects, especially when polarized CH fragments are involved. To evaluate the energetics of such interaction modes, we selected a biologically relevant model, <i>carbohydrate/aromatic stacking</i>, and conducted an experimental analysis comparing <i>binary</i> CH/π interactions to <i>ternary</i> CH/π/CH stacking. Our approach utilized a dynamic combinatorial strategy, which is well-suited to reveal minor stability differences among aromatic complexes. Our results showed that carbohydrate/aromatic stacking is relatively insensitive to molecular recognition events occurring on the opposite side of the aromatic platform, whether exposed to water or involved in additional CH/π contacts, with free energy fluctuations lower than 10%. Based on these data, for all practical purposes, the two opposing aromatic surfaces can be considered independent, noninteracting binding sites, making aromatic platforms optimal connecting elements for supramolecular cross-linking.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4466-4473"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CH/π bonds are versatile elements for the construction of complex molecular architectures, thus playing key roles in many biomolecular recognition processes. Although seldom acknowledged, aromatic units are inherently bivalent and can participate in CH/π bonds through either face simultaneously, leading to the formation of ternary stacking complexes. This sandwich-like arrangement is by far the most common in natural complexes and could potentially lead to negative cooperativity due to unfavorable polarization or electrostatic effects, especially when polarized CH fragments are involved. To evaluate the energetics of such interaction modes, we selected a biologically relevant model, carbohydrate/aromatic stacking, and conducted an experimental analysis comparing binary CH/π interactions to ternary CH/π/CH stacking. Our approach utilized a dynamic combinatorial strategy, which is well-suited to reveal minor stability differences among aromatic complexes. Our results showed that carbohydrate/aromatic stacking is relatively insensitive to molecular recognition events occurring on the opposite side of the aromatic platform, whether exposed to water or involved in additional CH/π contacts, with free energy fluctuations lower than 10%. Based on these data, for all practical purposes, the two opposing aromatic surfaces can be considered independent, noninteracting binding sites, making aromatic platforms optimal connecting elements for supramolecular cross-linking.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信