The AFD-expressed SRTX-1 GPCR does not contribute to AFD thermosensory functions.

microPublication biology Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.17912/micropub.biology.001382
Laurie Chen, Nathan Harris, Piali Sengupta
{"title":"The AFD-expressed SRTX-1 GPCR does not contribute to AFD thermosensory functions.","authors":"Laurie Chen, Nathan Harris, Piali Sengupta","doi":"10.17912/micropub.biology.001382","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature experience-regulated gene expression changes have been shown to underlie long-term adaptation of the response threshold of the AFD thermosensory neuron pair, and contribute to thermotaxis behavioral plasticity in <i>C. elegans</i> . We previously showed that the SRTX-1 GPCR is expressed primarily in AFD and is localized to their sensory endings. Here we find that SRTX-1 levels are regulated by the animal's temperature experience. However, loss or overexpression of <i>srtx-1</i> does not affect thermotaxis behaviors or examined temperature-evoked calcium responses in AFD. Our observations suggest that SRTX-1 may modulate AFD responses and behavior under defined temperature conditions, or in response to specific environmental stimuli.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature experience-regulated gene expression changes have been shown to underlie long-term adaptation of the response threshold of the AFD thermosensory neuron pair, and contribute to thermotaxis behavioral plasticity in C. elegans . We previously showed that the SRTX-1 GPCR is expressed primarily in AFD and is localized to their sensory endings. Here we find that SRTX-1 levels are regulated by the animal's temperature experience. However, loss or overexpression of srtx-1 does not affect thermotaxis behaviors or examined temperature-evoked calcium responses in AFD. Our observations suggest that SRTX-1 may modulate AFD responses and behavior under defined temperature conditions, or in response to specific environmental stimuli.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信