Unveiling a novel signalling pathway involving NRF2 and PGAM5 in regulating the mitochondrial unfolded protein response in stressed cardiomyocytes

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rahme Nese Safakli , Stephen Gray , Nadia Bernardi , Ioannis Smyrnias
{"title":"Unveiling a novel signalling pathway involving NRF2 and PGAM5 in regulating the mitochondrial unfolded protein response in stressed cardiomyocytes","authors":"Rahme Nese Safakli ,&nbsp;Stephen Gray ,&nbsp;Nadia Bernardi ,&nbsp;Ioannis Smyrnias","doi":"10.1016/j.biocel.2024.106704","DOIUrl":null,"url":null,"abstract":"<div><div>The mitochondrial unfolded protein response (UPRmt) is a conserved signalling pathway that initiates a specific transcriptional programme to maintain mitochondrial and cellular homeostasis under stress. Previous studies have demonstrated that UPRmt activation has protective effects in the pressure-overloaded human heart, suggesting that robust UPRmt stimulation could serve as an intervention strategy for cardiovascular diseases. However, the precise mechanisms of UPRmt regulation remain unclear. In this study, we present evidence that the NRF2 transcription factor is involved in UPRmt activation in cardiomyocytes during conditions of mitochondrial stress. Silencing NRF2 partially reduces UPRmt activation, highlighting its essential role in this pathway. However, constitutive activation of NRF2 via inhibition of its cytosolic regulator KEAP1 does not increase levels of UPRmt activation markers, suggesting an alternative regulatory mechanism independent of the canonical KEAP1-NRF2 axis. Further analysis revealed that NRF2 likely affects UPRmt activation through its interaction with PGAM5 at the mitochondrial membrane. Disruption of PGAM5 in cardiomyocytes subjected to mitochondrial stress reduces the interaction between PGAM5 and NRF2, enhancing nuclear translocation of NRF2 and significantly upregulating the UPRmt in an NRF2-dependent manner. This NRF2-regulated UPRmt amplification improves mitochondrial respiration, reflecting an enhanced capacity for cardiomyocytes to meet elevated energetic demands during mitochondrial stress. Our findings highlight the therapeutic potential of targeting the NRF2-PGAM5-KEAP1 signalling complex to amplify the UPRmt in cardiomyocytes for cardiovascular and other diseases associated with mitochondrial dysfunction. Future studies should aim to elucidate the mechanisms via which NRF2 enhances the protective effects of UPRmt, thereby contributing to more targeted therapeutic approaches.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"178 ","pages":"Article 106704"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001973","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mitochondrial unfolded protein response (UPRmt) is a conserved signalling pathway that initiates a specific transcriptional programme to maintain mitochondrial and cellular homeostasis under stress. Previous studies have demonstrated that UPRmt activation has protective effects in the pressure-overloaded human heart, suggesting that robust UPRmt stimulation could serve as an intervention strategy for cardiovascular diseases. However, the precise mechanisms of UPRmt regulation remain unclear. In this study, we present evidence that the NRF2 transcription factor is involved in UPRmt activation in cardiomyocytes during conditions of mitochondrial stress. Silencing NRF2 partially reduces UPRmt activation, highlighting its essential role in this pathway. However, constitutive activation of NRF2 via inhibition of its cytosolic regulator KEAP1 does not increase levels of UPRmt activation markers, suggesting an alternative regulatory mechanism independent of the canonical KEAP1-NRF2 axis. Further analysis revealed that NRF2 likely affects UPRmt activation through its interaction with PGAM5 at the mitochondrial membrane. Disruption of PGAM5 in cardiomyocytes subjected to mitochondrial stress reduces the interaction between PGAM5 and NRF2, enhancing nuclear translocation of NRF2 and significantly upregulating the UPRmt in an NRF2-dependent manner. This NRF2-regulated UPRmt amplification improves mitochondrial respiration, reflecting an enhanced capacity for cardiomyocytes to meet elevated energetic demands during mitochondrial stress. Our findings highlight the therapeutic potential of targeting the NRF2-PGAM5-KEAP1 signalling complex to amplify the UPRmt in cardiomyocytes for cardiovascular and other diseases associated with mitochondrial dysfunction. Future studies should aim to elucidate the mechanisms via which NRF2 enhances the protective effects of UPRmt, thereby contributing to more targeted therapeutic approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
124
审稿时长
19 days
期刊介绍: IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research. Topics of interest include, but are not limited to: -Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism -Novel insights into disease pathogenesis -Nanotechnology with implication to biological and medical processes -Genomics and bioinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信