Mengdie Li, Yating Yang, Guodong Xu, Jingyang Gu, Yingqian Zhang, Michael Maes, Huanzhong Liu
{"title":"SEP-363856 attenuates CUMS-induced depression-like behaviours and reverses hippocampal neuronal injuries.","authors":"Mengdie Li, Yating Yang, Guodong Xu, Jingyang Gu, Yingqian Zhang, Michael Maes, Huanzhong Liu","doi":"10.1080/15622975.2024.2429507","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study employed a chronic unpredictable mild stress (CUMS) model to examine the antidepressant properties of SEP-363856.</p><p><strong>Methods: </strong>The sucrose preference test (SPT) was employed to evaluate anhedonia, the open field test (OFT) to measure locomotor activity and exploratory behaviour, the elevated plus-maze (EPM) to assess anxiety-like behaviour, and the tail suspension test (TST) and forced swimming test (FST) to determine despair behaviour. qRT-PCR was implemented to evaluate gene expression levels in the hippocampus. Western blot, and ELISA were implemented to evaluate hippocampal protein expression, and Nissl staining was implemented to identify hippocampal neuronal injury.</p><p><strong>Results: </strong>The 10 mg/kg dosage of SEP-363856 and fluoxetine significantly improved depressive-like behaviours as assessed by the SPT, OFT, EPM, TST, and FST. This was associated with improved hippocampal neuronal damage, enhanced mRNA expression of brain-derived neurotrophic factor, synaptophysin, and postsynaptic density 95. SEP-363856 increased the levels of insulin-like growth factor-1 (IGF-1), IGF-1 receptor β, phospho-phosphatidylinositide 3-kinase, and phospho-protein kinase B in the brain.</p><p><strong>Conclusions: </strong>The antidepressant-like effects of SEP-363856 are linked to increased hippocampal neurotrophic factors, decreased hippocampus neuronal lesions, and activation of the IGF-1Rβ/PI3K/AKT signalling pathway. The latter may serve as a novel drug target for the treatment of depression.</p>","PeriodicalId":49358,"journal":{"name":"World Journal of Biological Psychiatry","volume":" ","pages":"604-621"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15622975.2024.2429507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study employed a chronic unpredictable mild stress (CUMS) model to examine the antidepressant properties of SEP-363856.
Methods: The sucrose preference test (SPT) was employed to evaluate anhedonia, the open field test (OFT) to measure locomotor activity and exploratory behaviour, the elevated plus-maze (EPM) to assess anxiety-like behaviour, and the tail suspension test (TST) and forced swimming test (FST) to determine despair behaviour. qRT-PCR was implemented to evaluate gene expression levels in the hippocampus. Western blot, and ELISA were implemented to evaluate hippocampal protein expression, and Nissl staining was implemented to identify hippocampal neuronal injury.
Results: The 10 mg/kg dosage of SEP-363856 and fluoxetine significantly improved depressive-like behaviours as assessed by the SPT, OFT, EPM, TST, and FST. This was associated with improved hippocampal neuronal damage, enhanced mRNA expression of brain-derived neurotrophic factor, synaptophysin, and postsynaptic density 95. SEP-363856 increased the levels of insulin-like growth factor-1 (IGF-1), IGF-1 receptor β, phospho-phosphatidylinositide 3-kinase, and phospho-protein kinase B in the brain.
Conclusions: The antidepressant-like effects of SEP-363856 are linked to increased hippocampal neurotrophic factors, decreased hippocampus neuronal lesions, and activation of the IGF-1Rβ/PI3K/AKT signalling pathway. The latter may serve as a novel drug target for the treatment of depression.
期刊介绍:
The aim of The World Journal of Biological Psychiatry is to increase the worldwide communication of knowledge in clinical and basic research on biological psychiatry. Its target audience is thus clinical psychiatrists, educators, scientists and students interested in biological psychiatry. The composition of The World Journal of Biological Psychiatry , with its diverse categories that allow communication of a great variety of information, ensures that it is of interest to a wide range of readers.
The World Journal of Biological Psychiatry is a major clinically oriented journal on biological psychiatry. The opportunity to educate (through critical review papers, treatment guidelines and consensus reports), publish original work and observations (original papers and brief reports) and to express personal opinions (Letters to the Editor) makes The World Journal of Biological Psychiatry an extremely important medium in the field of biological psychiatry all over the world.