Brandon D Hoenig, Philipp Böning, Amadeus Plewnia, Corinne L Richards-Zawacki
{"title":"A Simplified, CRISPR-Based Method for the Detection of Batrachochytrium salamandrivorans.","authors":"Brandon D Hoenig, Philipp Böning, Amadeus Plewnia, Corinne L Richards-Zawacki","doi":"10.1007/s10393-024-01690-x","DOIUrl":null,"url":null,"abstract":"<p><p>The fungal pathogen Batrachochytrium salamandrivorans (Bsal) is one of two species (the other, B. dendrobatidis/Bd) that cause amphibian chytridiomycosis, an emerging infectious disease that has been indicated in the declines of hundreds of amphibian species worldwide. While Bd has been near globally distributed for decades, Bsal is a more recently emerged pathogen, having been identified just over a decade ago with current impacts localized to salamandrids in parts of Europe. However, because there is concern that Bsal will cause widespread declines if introduced to naïve regions-such as the Americas where the greatest diversity of salamandrids exist-it is imperative that widespread monitoring strategies be implemented to mitigate the spread of Bsal. As standard molecular diagnostic approaches-such as qPCR-tend to be expensive, time-consuming, or require specialized instrumentation and training, we have developed a simplified, rapid, CRISPR-based approach for Bsal-DNA detection. Here, we demonstrate this approach-termed FINDeM (Field-deployable, Isothermal, Nucleotide-based Detection Method)-and show that it can detect clinically relevant concentrations of Bsal DNA in under an hour using only inexpensive supplies and body-heat inducible reactions. Further, we highlight drawbacks and limitations associated with FINDeM-such as decreased DNA extraction yields and detection sensitivity when compared to more traditional approaches-and provide suggestions for additional development and future application of this method.</p>","PeriodicalId":51027,"journal":{"name":"Ecohealth","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohealth","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10393-024-01690-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The fungal pathogen Batrachochytrium salamandrivorans (Bsal) is one of two species (the other, B. dendrobatidis/Bd) that cause amphibian chytridiomycosis, an emerging infectious disease that has been indicated in the declines of hundreds of amphibian species worldwide. While Bd has been near globally distributed for decades, Bsal is a more recently emerged pathogen, having been identified just over a decade ago with current impacts localized to salamandrids in parts of Europe. However, because there is concern that Bsal will cause widespread declines if introduced to naïve regions-such as the Americas where the greatest diversity of salamandrids exist-it is imperative that widespread monitoring strategies be implemented to mitigate the spread of Bsal. As standard molecular diagnostic approaches-such as qPCR-tend to be expensive, time-consuming, or require specialized instrumentation and training, we have developed a simplified, rapid, CRISPR-based approach for Bsal-DNA detection. Here, we demonstrate this approach-termed FINDeM (Field-deployable, Isothermal, Nucleotide-based Detection Method)-and show that it can detect clinically relevant concentrations of Bsal DNA in under an hour using only inexpensive supplies and body-heat inducible reactions. Further, we highlight drawbacks and limitations associated with FINDeM-such as decreased DNA extraction yields and detection sensitivity when compared to more traditional approaches-and provide suggestions for additional development and future application of this method.
期刊介绍:
EcoHealth aims to advance research, practice, and knowledge integration at the interface of ecology and health by publishing high quality research and review articles that address and profile new ideas, developments, and programs. The journal’s scope encompasses research that integrates concepts and theory from many fields of scholarship (including ecological, social and health sciences, and the humanities) and draws upon multiple types of knowledge, including those of relevance to practice and policy. Papers address integrated ecology and health challenges arising in public health, human and veterinary medicine, conservation and ecosystem management, rural and urban development and planning, and other fields that address the social-ecological context of health. The journal is a central platform for fulfilling the mission of the EcoHealth Alliance to strive for sustainable health of people, domestic animals, wildlife, and ecosystems by promoting discovery, understanding, and transdisciplinarity.
The journal invites substantial contributions in the following areas:
One Health and Conservation Medicine
o Integrated research on health of humans, wildlife, livestock and ecosystems
o Research and policy in ecology, public health, and agricultural sustainability
o Emerging infectious diseases affecting people, wildlife, domestic animals, and plants
o Research and practice linking human and animal health and/or social-ecological systems
o Anthropogenic environmental change and drivers of disease emergence in humans, wildlife, livestock and ecosystems
o Health of humans and animals in relation to terrestrial, freshwater, and marine ecosystems
Ecosystem Approaches to Health
o Systems thinking and social-ecological systems in relation to health
o Transdiiplinary approaches to health, ecosystems and society.