Palindrome-mediated DNA nanotubes with cell-specific aptamers to improve targeted antitumor effects and reduce toxicity on non-small cell lung cancer.

IF 8 2区 生物学 Q1 BIOLOGY
Cheng Zheng, Lanlan Song, Chang Yu, Lingye Zhu, Jing Zhang, Ning Wang, Mengchu Liu, Shini Li, Liangxing Wang, Zhifa Shen, Xiaoying Huang
{"title":"Palindrome-mediated DNA nanotubes with cell-specific aptamers to improve targeted antitumor effects and reduce toxicity on non-small cell lung cancer.","authors":"Cheng Zheng, Lanlan Song, Chang Yu, Lingye Zhu, Jing Zhang, Ning Wang, Mengchu Liu, Shini Li, Liangxing Wang, Zhifa Shen, Xiaoying Huang","doi":"10.1007/s11427-023-2556-4","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy is regarded as a widely used and effective treatment strategy for lung cancer, although most conventional chemotherapeutics cause severe toxic side-effects due to their indiscriminate attacks on both cancerous and normal cells. Although nucleic acid nanomaterials are emerging as a promising drug delivery strategy, their clinical applications are limited by rapid degradation by nucleases and difficulties in targeting cancer cells. In this study, we have developed a Rhein-loaded aptamer-based DNA nanotube (DNT-S6@Rhein) for the targeted and efficient therapy of non-small cell lung cancer. Through the palindrome segments, two specified oligonucleotides were hybridized and folded into the well-defined nanotubes (DNT-S6), with the S6 aptamer distributed outside. The obtained nanotubes exhibited excellent serum stability and targeting ability towards A549 cells due to the firm structure and decoration of the S6 aptamer. Rhein, as an antitumor drug and DNA intercalator, can be effectively inserted into the DNT-S6. The drug-loaded nanotubes rapidly disassembled in intracellular environment and then the released Rhein was found to activate cellular apoptotic process and significantly suppress proliferation, migration and invasion of A549 cells. Moreover, DNT-S6@Rhein could efficiently accumulate in tumor regions, offering compelling therapeutic efficacy and biocompatibility under both in vitro and in vivo settings. These findings of this study provide a promising strategy for mitigating the inevitable systemic side-effects of chemotherapy and expand the potential application of DNA nanostructure on targeted drug delivery.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-023-2556-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy is regarded as a widely used and effective treatment strategy for lung cancer, although most conventional chemotherapeutics cause severe toxic side-effects due to their indiscriminate attacks on both cancerous and normal cells. Although nucleic acid nanomaterials are emerging as a promising drug delivery strategy, their clinical applications are limited by rapid degradation by nucleases and difficulties in targeting cancer cells. In this study, we have developed a Rhein-loaded aptamer-based DNA nanotube (DNT-S6@Rhein) for the targeted and efficient therapy of non-small cell lung cancer. Through the palindrome segments, two specified oligonucleotides were hybridized and folded into the well-defined nanotubes (DNT-S6), with the S6 aptamer distributed outside. The obtained nanotubes exhibited excellent serum stability and targeting ability towards A549 cells due to the firm structure and decoration of the S6 aptamer. Rhein, as an antitumor drug and DNA intercalator, can be effectively inserted into the DNT-S6. The drug-loaded nanotubes rapidly disassembled in intracellular environment and then the released Rhein was found to activate cellular apoptotic process and significantly suppress proliferation, migration and invasion of A549 cells. Moreover, DNT-S6@Rhein could efficiently accumulate in tumor regions, offering compelling therapeutic efficacy and biocompatibility under both in vitro and in vivo settings. These findings of this study provide a promising strategy for mitigating the inevitable systemic side-effects of chemotherapy and expand the potential application of DNA nanostructure on targeted drug delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信