{"title":"A Novel Real-time Phase Prediction Network in EEG Rhythm.","authors":"Hao Liu, Zihui Qi, Yihang Wang, Zhengyi Yang, Lingzhong Fan, Nianming Zuo, Tianzi Jiang","doi":"10.1007/s12264-024-01321-z","DOIUrl":null,"url":null,"abstract":"<p><p>Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-024-01321-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.