Field emission from flipped and patterned vertically aligned carbon nanotube arrays.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
S C Olsen, B Vandyke, R R Vanfleet, V Robinson
{"title":"Field emission from flipped and patterned vertically aligned carbon nanotube arrays.","authors":"S C Olsen, B Vandyke, R R Vanfleet, V Robinson","doi":"10.1088/1361-6528/ad9839","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) possess many unique properties that make them ideal for field emission. However, screening due to high density and poor substrate adhesion limits their application. We tested the field emission of various patterned vertically aligned carbon nanotube (VACNT) arrays adhered to copper substrates using carbon paste. After many fabrication steps to improve uniformity, we found that the field emission was dominated by individual CNTs that were taller than the bulk VACNT arrays. After testing a sample with silver epoxy as the binder, we found that the failure mechanism was adhesion to the substrate. Using energy dispersive x-ray spectroscopy, we found that the carbon paste migrated into the VACNT bulk volume while the silver epoxy did not. The migration of carbon paste into the volume may explain why the carbon paste had greater adhesion than the silver epoxy.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9839","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotubes (CNTs) possess many unique properties that make them ideal for field emission. However, screening due to high density and poor substrate adhesion limits their application. We tested the field emission of various patterned vertically aligned carbon nanotube (VACNT) arrays adhered to copper substrates using carbon paste. After many fabrication steps to improve uniformity, we found that the field emission was dominated by individual CNTs that were taller than the bulk VACNT arrays. After testing a sample with silver epoxy as the binder, we found that the failure mechanism was adhesion to the substrate. Using energy dispersive x-ray spectroscopy, we found that the carbon paste migrated into the VACNT bulk volume while the silver epoxy did not. The migration of carbon paste into the volume may explain why the carbon paste had greater adhesion than the silver epoxy.

垂直排列和翻转碳纳米管阵列的场发射。
碳纳米管(CNTs)具有许多独特的性质,使其成为场发射的理想材料。然而,由于密度高和基材附着力差,筛选限制了它们的应用。我们测试了不同垂直排列碳纳米管(VACNT)阵列在铜衬底上的场发射性能。经过许多改进均匀性的制作步骤后,我们发现场发射由比整体VACNT阵列高的单个碳纳米管主导。在以银环氧树脂为粘结剂的样品测试后,我们发现破坏机制是与基材的粘附。利用能量色散x射线光谱(EDX),我们发现碳糊体迁移到VACNT的体积中,而环氧银则没有。碳糊向体积内的迁移可以解释为什么碳糊比银环氧树脂具有更大的附着力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信