Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan Sirelkhatim, Guillaume Richard, Marcin Skwark, Karim Beguir, Marie Lopez, Thomas Pierrot
{"title":"Nucleotide Transformer: building and evaluating robust foundation models for human genomics.","authors":"Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan Sirelkhatim, Guillaume Richard, Marcin Skwark, Karim Beguir, Marie Lopez, Thomas Pierrot","doi":"10.1038/s41592-024-02523-z","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of molecular phenotypes from DNA sequences remains a longstanding challenge in genomics, often driven by limited annotated data and the inability to transfer learnings between tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named Nucleotide Transformer, ranging from 50 million up to 2.5 billion parameters and integrating information from 3,202 human genomes and 850 genomes from diverse species. These transformer models yield context-specific representations of nucleotide sequences, which allow for accurate predictions even in low-data settings. We show that the developed models can be fine-tuned at low cost to solve a variety of genomics applications. Despite no supervision, the models learned to focus attention on key genomic elements and can be used to improve the prioritization of genetic variants. The training and application of foundational models in genomics provides a widely applicable approach for accurate molecular phenotype prediction from DNA sequence.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02523-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of molecular phenotypes from DNA sequences remains a longstanding challenge in genomics, often driven by limited annotated data and the inability to transfer learnings between tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named Nucleotide Transformer, ranging from 50 million up to 2.5 billion parameters and integrating information from 3,202 human genomes and 850 genomes from diverse species. These transformer models yield context-specific representations of nucleotide sequences, which allow for accurate predictions even in low-data settings. We show that the developed models can be fine-tuned at low cost to solve a variety of genomics applications. Despite no supervision, the models learned to focus attention on key genomic elements and can be used to improve the prioritization of genetic variants. The training and application of foundational models in genomics provides a widely applicable approach for accurate molecular phenotype prediction from DNA sequence.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.