Profiling vivax malaria incidence, residual transmission, and risk factors using reactive case detection in low transmission settings of Ethiopia.

IF 2.4 3区 医学 Q3 INFECTIOUS DISEASES
Ashenafi Abossie, Hallelujah Getachew, Assalif Demissew, Kassahun Habtamu, Arega Tsegaye, Daibin Zhong, Xiaoming Wang, Teshome Degefa, Ming-Chieh Lee, Guofa Zhou, Christopher L King, James W Kazura, Delenasaw Yewhalaw, Guiyun Yan
{"title":"Profiling vivax malaria incidence, residual transmission, and risk factors using reactive case detection in low transmission settings of Ethiopia.","authors":"Ashenafi Abossie, Hallelujah Getachew, Assalif Demissew, Kassahun Habtamu, Arega Tsegaye, Daibin Zhong, Xiaoming Wang, Teshome Degefa, Ming-Chieh Lee, Guofa Zhou, Christopher L King, James W Kazura, Delenasaw Yewhalaw, Guiyun Yan","doi":"10.1186/s12936-024-05171-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identification of local Plasmodium vivax transmission foci and its hidden reservoirs are crucial to eliminating residual vivax malaria transmission. This study assessed whether reactive case detection (RCD) could better identify P. vivax cases and infection incidences in Arjo-Didessa, Southwestern Ethiopia.</p><p><strong>Methods: </strong>A RCD survey was conducted from November 2019 to October 2021 in Arjo-Didessa and the surrounding vicinity in southwestern Ethiopia. RCD was performed at 0, 30, and 60 days following reports of P. vivax infections by health facilities to detect further cases and potential transmission networks. Household members of the index case and neighbours living within 200 m of the index household were screened for P. vivax. Households 200-500 m away are considered controls and were also screened for P. vivax. Plasmodium vivax was detected by microscopy, rapid diagnostic testing (RDT), and quantitative polymerase chain reaction (qPCR). Risk factors associated with vivax malaria were analysed using generalized estimating equations (GEE).</p><p><strong>Results: </strong>A total of 3303 blood samples were collected from the index (n = 427), neighbouring (n = 1626), and control (n = 1240) household in the three rounds of follow-up visits for malaria infection, the overall positivity rate of P. vivax malaria was 1.6% (95% CI 1.2-2.2%), 1.9% (95% CI 1.5-2.4), and 3.9% (95% CI 3.2-4.6%) by microscopy, RDT, and qPCR, respectively. Microscopy and RDT detected 41.5% (54 of 130) and 49.1% (64 of 130) of the qPCR-confirmed P. vivax cases, respectively. Of qPCR-positive samples, 77.7% of the total P. vivax infections circulated in the index and neighbouring households, while control households accounted for 23.3% of the infections. Of the P. vivax infections detected 81.0% (95% CI 72.9-87.1%) were asymptomatic. In this study, P. vivax infection incidence was higher in index case households (53.8 cases per 1000 person-months) and (44.0 cases per 1000 person-months) in neighbouring households compared to the control households (25.1 cases per 1000 person-months) with statistical difference (p = 0.02). In index case households, children < 5 years and school-age children were at higher risk of P. vivax infection (AOR: 6.3, 95% CI: 2.24-18.02, p = 0.001 and AOR: 2.7, 95% CI: 1.10-6.64, p = 0.029).</p><p><strong>Conclusions: </strong>This study found clustering of asymptomatic and sub-microscopic P. vivax infections in the index case household and their neighbours using RCD and molecular methods. Children under 5 years and of school age were more likely to have P. vivax infection in index households. Thus, tailored RCD approaches and targeted interventions for interrupting residual P. vivax transmission networks are needed to eliminate P. vivax malaria in low transmission settings.</p>","PeriodicalId":18317,"journal":{"name":"Malaria Journal","volume":"23 1","pages":"362"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaria Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12936-024-05171-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Identification of local Plasmodium vivax transmission foci and its hidden reservoirs are crucial to eliminating residual vivax malaria transmission. This study assessed whether reactive case detection (RCD) could better identify P. vivax cases and infection incidences in Arjo-Didessa, Southwestern Ethiopia.

Methods: A RCD survey was conducted from November 2019 to October 2021 in Arjo-Didessa and the surrounding vicinity in southwestern Ethiopia. RCD was performed at 0, 30, and 60 days following reports of P. vivax infections by health facilities to detect further cases and potential transmission networks. Household members of the index case and neighbours living within 200 m of the index household were screened for P. vivax. Households 200-500 m away are considered controls and were also screened for P. vivax. Plasmodium vivax was detected by microscopy, rapid diagnostic testing (RDT), and quantitative polymerase chain reaction (qPCR). Risk factors associated with vivax malaria were analysed using generalized estimating equations (GEE).

Results: A total of 3303 blood samples were collected from the index (n = 427), neighbouring (n = 1626), and control (n = 1240) household in the three rounds of follow-up visits for malaria infection, the overall positivity rate of P. vivax malaria was 1.6% (95% CI 1.2-2.2%), 1.9% (95% CI 1.5-2.4), and 3.9% (95% CI 3.2-4.6%) by microscopy, RDT, and qPCR, respectively. Microscopy and RDT detected 41.5% (54 of 130) and 49.1% (64 of 130) of the qPCR-confirmed P. vivax cases, respectively. Of qPCR-positive samples, 77.7% of the total P. vivax infections circulated in the index and neighbouring households, while control households accounted for 23.3% of the infections. Of the P. vivax infections detected 81.0% (95% CI 72.9-87.1%) were asymptomatic. In this study, P. vivax infection incidence was higher in index case households (53.8 cases per 1000 person-months) and (44.0 cases per 1000 person-months) in neighbouring households compared to the control households (25.1 cases per 1000 person-months) with statistical difference (p = 0.02). In index case households, children < 5 years and school-age children were at higher risk of P. vivax infection (AOR: 6.3, 95% CI: 2.24-18.02, p = 0.001 and AOR: 2.7, 95% CI: 1.10-6.64, p = 0.029).

Conclusions: This study found clustering of asymptomatic and sub-microscopic P. vivax infections in the index case household and their neighbours using RCD and molecular methods. Children under 5 years and of school age were more likely to have P. vivax infection in index households. Thus, tailored RCD approaches and targeted interventions for interrupting residual P. vivax transmission networks are needed to eliminate P. vivax malaria in low transmission settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Malaria Journal
Malaria Journal 医学-寄生虫学
CiteScore
5.10
自引率
23.30%
发文量
334
审稿时长
2-4 weeks
期刊介绍: Malaria Journal is aimed at the scientific community interested in malaria in its broadest sense. It is the only journal that publishes exclusively articles on malaria and, as such, it aims to bring together knowledge from the different specialities involved in this very broad discipline, from the bench to the bedside and to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信