Pathogen validation of small- and large-scale recycled water plants utilizing various clarification and media filtration technologies.

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Journal of water and health Pub Date : 2024-11-01 Epub Date: 2024-11-08 DOI:10.2166/wh.2024.263
Petra Reeve, Gretchen Marshall, Po Zhang, Ben Thwaites, Ben van den Akker
{"title":"Pathogen validation of small- and large-scale recycled water plants utilizing various clarification and media filtration technologies.","authors":"Petra Reeve, Gretchen Marshall, Po Zhang, Ben Thwaites, Ben van den Akker","doi":"10.2166/wh.2024.263","DOIUrl":null,"url":null,"abstract":"<p><p>Media filters are important in wastewater recycling schemes for pathogen removal. Filter selection depends on health targets and plant scale; however, there is a data gap concerning pathogen removal efficacy at full scale. This study compared the pathogen removal performance of two full-scale filtration technologies, including a small 17,000 m<sup>3</sup>/d pressurized media filtration (PMF) plant and a large 120,000 m<sup>3</sup>/d gravity filter in the form of dissolved air flotation filtration (DAFF). The preceding clarification processes were also assessed. Validation of protozoa and virus removal was estimated by dosing model organisms yeast and MS2 bacteriophage to demonstrate removal potential. The DAFF process (coagulation, flotation and filtration) was most efficient at removing bacteriophage with a mean log<sub>10</sub> reduction value (LRV) of 2.90 (±0.64), compared with 0.98 (±0.37) achieved by coagulation, sedimentation and PMF. Yeast log<sub>10</sub> reduction though both systems were similar measuring 3.80 (±1.06) through DAFF and 4.57 (±0.14) through coagulation, sedimentation and PMF. The DAFF process showed greater variability in MS2 and yeast removal, which was attributed to filtration. Energy and chemical usage were also evaluated, revealing trade-offs between these factors, treatment scale and pathogen LRVs, offering practical insights into the technological and economic aspects of designing fit-for-purpose recycled water schemes.</p>","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"22 11","pages":"2132-2145"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2024.263","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Media filters are important in wastewater recycling schemes for pathogen removal. Filter selection depends on health targets and plant scale; however, there is a data gap concerning pathogen removal efficacy at full scale. This study compared the pathogen removal performance of two full-scale filtration technologies, including a small 17,000 m3/d pressurized media filtration (PMF) plant and a large 120,000 m3/d gravity filter in the form of dissolved air flotation filtration (DAFF). The preceding clarification processes were also assessed. Validation of protozoa and virus removal was estimated by dosing model organisms yeast and MS2 bacteriophage to demonstrate removal potential. The DAFF process (coagulation, flotation and filtration) was most efficient at removing bacteriophage with a mean log10 reduction value (LRV) of 2.90 (±0.64), compared with 0.98 (±0.37) achieved by coagulation, sedimentation and PMF. Yeast log10 reduction though both systems were similar measuring 3.80 (±1.06) through DAFF and 4.57 (±0.14) through coagulation, sedimentation and PMF. The DAFF process showed greater variability in MS2 and yeast removal, which was attributed to filtration. Energy and chemical usage were also evaluated, revealing trade-offs between these factors, treatment scale and pathogen LRVs, offering practical insights into the technological and economic aspects of designing fit-for-purpose recycled water schemes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of water and health
Journal of water and health 环境科学-环境科学
CiteScore
3.60
自引率
8.70%
发文量
110
审稿时长
18-36 weeks
期刊介绍: Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信