Systematic characterization of cinnamyl alcohol dehydrogenase members revealed classification and function divergence in Haplomitrium mnioides.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Li Wang, Guohui Sun, Jia Wang, Hongyang Zhu, Yifeng Wu
{"title":"Systematic characterization of cinnamyl alcohol dehydrogenase members revealed classification and function divergence in Haplomitrium mnioides.","authors":"Li Wang, Guohui Sun, Jia Wang, Hongyang Zhu, Yifeng Wu","doi":"10.1007/s10265-024-01601-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) is considered to be a key enzyme in lignin biosynthesis, which can catalyze cinnamyl aldehyde to produce cinnamyl alcohol. In this study, three putative CADs were characterized from the liverwort Haplomitrium mnioides. The sequence alignment and phylogenetic analysis revealed that HmCADs belonged to a multigene family, with three HmCADs belonging to class II, class III, and class IV, respectively. In vitro enzymatic studies demonstrated that HmCAD2 exhibited high affinity and catalytic activity towards five cinnamyl aldehydes, followed by HmCAD3 with poor catalytic activity, and HmCAD1 catalyzed only the reaction of p-coumaryl aldehyde and coniferyl aldehyde with extremely low catalytic capacity. Protein-substrate binding simulations were performed to investigate the differences in catalytic activity exhibited when proteins catalyzed different substrates. Furthermore, distinct expression patterns of three HmCADs were identified in different plant tissues. Subcellular localization tests confirmed that HmCAD1/2/3 was located in the cytoplasm. The simulated responses of HmCADs to different stresses showed that HmCAD1 played a positive role in coping with each stress, while HmCAD2/3 was weak. These findings demonstrate the diversity of CADs in liverwort, highlight the divergent role of HmCAD1/2/3 in substrate catalysis, and also suggest their possible involvement in stress response, thereby providing new insights into CAD evolution while emphasizing their potential distinctive and collaborative contributions to the normal growth of primitive liverworts.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01601-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) is considered to be a key enzyme in lignin biosynthesis, which can catalyze cinnamyl aldehyde to produce cinnamyl alcohol. In this study, three putative CADs were characterized from the liverwort Haplomitrium mnioides. The sequence alignment and phylogenetic analysis revealed that HmCADs belonged to a multigene family, with three HmCADs belonging to class II, class III, and class IV, respectively. In vitro enzymatic studies demonstrated that HmCAD2 exhibited high affinity and catalytic activity towards five cinnamyl aldehydes, followed by HmCAD3 with poor catalytic activity, and HmCAD1 catalyzed only the reaction of p-coumaryl aldehyde and coniferyl aldehyde with extremely low catalytic capacity. Protein-substrate binding simulations were performed to investigate the differences in catalytic activity exhibited when proteins catalyzed different substrates. Furthermore, distinct expression patterns of three HmCADs were identified in different plant tissues. Subcellular localization tests confirmed that HmCAD1/2/3 was located in the cytoplasm. The simulated responses of HmCADs to different stresses showed that HmCAD1 played a positive role in coping with each stress, while HmCAD2/3 was weak. These findings demonstrate the diversity of CADs in liverwort, highlight the divergent role of HmCAD1/2/3 in substrate catalysis, and also suggest their possible involvement in stress response, thereby providing new insights into CAD evolution while emphasizing their potential distinctive and collaborative contributions to the normal growth of primitive liverworts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
文献相关原料
公司名称 产品信息 采购帮参考价格
索莱宝 dihydroquercetin
索莱宝 dihydroquercetin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信