Miao Zhang, Yiran Wan, Haiyang He, Yuanjia Hu, Changhong Zhang, Jingyuan Nie, Yanlei Wu, Kaiying Deng, Xianliang Huang, Xun Lei
{"title":"Research on Risk Prediction of Condiments Based on Gray Correlation Analysis - Deep Neural Networks.","authors":"Miao Zhang, Yiran Wan, Haiyang He, Yuanjia Hu, Changhong Zhang, Jingyuan Nie, Yanlei Wu, Kaiying Deng, Xianliang Huang, Xun Lei","doi":"10.1016/j.jfp.2024.100419","DOIUrl":null,"url":null,"abstract":"<p><p>Food safety is directly related to the health of the public, and the safety of condiments is also of great significance. In this study, a risk assessment model for condiments based on gray correlation analysis was established by using publicly available sampling data of soy sauce and vinegar in China. Risk indicator screening and data preprocessing were performed first, and the weight of each indicator was calculated by gray correlation analysis to formulate a comprehensive risk value label. Then, three machine learning models, Deep Neural Network (DNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost), were used to predict the comprehensive risk values. Finally, the fuzzy synthesis analysis was utilized to classify the risk level of the composite risk value. In this study, based on the analysis of 282 sets of soy sauce and 704 sets of vinegar samples, the trained DNN model has the optimal prediction performance, which can basically predict the comprehensive risk value and risk level of a sample by inputting the detection indexes of that sample. This method can provide a more reasonable basis for relevant departments to formulate risk control strategies.</p>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":" ","pages":"100419"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jfp.2024.100419","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food safety is directly related to the health of the public, and the safety of condiments is also of great significance. In this study, a risk assessment model for condiments based on gray correlation analysis was established by using publicly available sampling data of soy sauce and vinegar in China. Risk indicator screening and data preprocessing were performed first, and the weight of each indicator was calculated by gray correlation analysis to formulate a comprehensive risk value label. Then, three machine learning models, Deep Neural Network (DNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost), were used to predict the comprehensive risk values. Finally, the fuzzy synthesis analysis was utilized to classify the risk level of the composite risk value. In this study, based on the analysis of 282 sets of soy sauce and 704 sets of vinegar samples, the trained DNN model has the optimal prediction performance, which can basically predict the comprehensive risk value and risk level of a sample by inputting the detection indexes of that sample. This method can provide a more reasonable basis for relevant departments to formulate risk control strategies.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.