TaCCS1-B expression modulates copper, enzymatic antioxidants and polyphenols contents and provides abiotic stress tolerance in transgenic Arabidopsis.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Shivi Tyagi, Shumayla, Samar Singh, Ashutosh Pandey, Santosh Kumar Upadhyay
{"title":"TaCCS1-B expression modulates copper, enzymatic antioxidants and polyphenols contents and provides abiotic stress tolerance in transgenic Arabidopsis.","authors":"Shivi Tyagi, Shumayla, Samar Singh, Ashutosh Pandey, Santosh Kumar Upadhyay","doi":"10.1111/ppl.14645","DOIUrl":null,"url":null,"abstract":"<p><p>Abiotic stress, including osmotic and salinity stress, significantly affects plant growth and productivity. Copper chaperone for superoxide dismutase (CCS) is essential for copper homeostasis and oxidative stress management. In this study, we investigated the role of the TaCCS1-B gene of bread wheat in enhancing stress tolerance in yeast and transgenic Arabidopsis. Expression of TaCCS1-B increased abiotic stress tolerance in recombinant yeast cells. Phenotypic analysis of Arabidopsis TaCCS1-B expressing lines demonstrated that they exhibited significantly higher germination rates, increased root length and better growth under osmotic and salinity stress than wild type. Additionally, the transgenic lines exhibited higher copper accumulation and enhanced photosynthetic pigments and proline level, coupled with reduced hydrogen peroxide (H₂O₂) and malondialdehyde (MDA) contents. They also showed higher enzymatic antioxidants' activities, indicating reduced oxidative stress in transgenic lines, resulting in reduced flavonoid content. Gene expression analysis indicated modulated expression of stress-responsive genes in the transgenic lines under stress conditions. These findings suggested the role of TaCCS1-B in enhancing stress tolerance by improving copper homeostasis and regulating key stress-responsive genes. This study highlights the potential of TaCCS1-B for the development of better stress resilience crops, which is critical for sustaining agricultural productivity for food security under adverse environmental conditions.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14645"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14645","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abiotic stress, including osmotic and salinity stress, significantly affects plant growth and productivity. Copper chaperone for superoxide dismutase (CCS) is essential for copper homeostasis and oxidative stress management. In this study, we investigated the role of the TaCCS1-B gene of bread wheat in enhancing stress tolerance in yeast and transgenic Arabidopsis. Expression of TaCCS1-B increased abiotic stress tolerance in recombinant yeast cells. Phenotypic analysis of Arabidopsis TaCCS1-B expressing lines demonstrated that they exhibited significantly higher germination rates, increased root length and better growth under osmotic and salinity stress than wild type. Additionally, the transgenic lines exhibited higher copper accumulation and enhanced photosynthetic pigments and proline level, coupled with reduced hydrogen peroxide (H₂O₂) and malondialdehyde (MDA) contents. They also showed higher enzymatic antioxidants' activities, indicating reduced oxidative stress in transgenic lines, resulting in reduced flavonoid content. Gene expression analysis indicated modulated expression of stress-responsive genes in the transgenic lines under stress conditions. These findings suggested the role of TaCCS1-B in enhancing stress tolerance by improving copper homeostasis and regulating key stress-responsive genes. This study highlights the potential of TaCCS1-B for the development of better stress resilience crops, which is critical for sustaining agricultural productivity for food security under adverse environmental conditions.

TaCCS1-B表达调节铜、酶促抗氧化剂和多酚含量,并在转基因拟南芥中提供非生物胁迫耐受性。
非生物胁迫,包括渗透胁迫和盐度胁迫,对植物的生长和生产力有显著影响。超氧化物歧化酶铜伴侣蛋白在铜稳态和氧化应激管理中起着至关重要的作用。在这项研究中,我们研究了面包小麦TaCCS1-B基因在酵母和转基因拟南芥中增强抗逆性的作用。TaCCS1-B的表达提高了重组酵母细胞的非生物胁迫耐受性。对TaCCS1-B表达系的表型分析表明,与野生型相比,TaCCS1-B表达系在渗透和盐胁迫下的发芽率、根长和生长均显著提高。此外,转基因植株铜积累量增加,光合色素和脯氨酸含量增加,过氧化氢(H₂O₂)和丙二醛(MDA)含量降低。它们还显示出更高的酶抗氧化剂活性,表明转基因品系的氧化应激降低,导致类黄酮含量降低。基因表达分析表明,在胁迫条件下,转基因株系中胁迫应答基因的表达受到调控。这些发现提示TaCCS1-B通过改善铜稳态和调节关键应激反应基因来增强胁迫耐受性。这项研究强调了TaCCS1-B在培育抗逆性更好的作物方面的潜力,这对于在不利环境条件下维持农业生产力和粮食安全至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信