Maria Eduarda Maia, Rafael Xavier Martins, Matheus Carvalho, Luís M Félix, Luis Fernando Marques-Santos, Davi Farias
{"title":"Effects of atrazine, diuron and glyphosate mixtures on zebrafish embryos: acute toxicity and oxidative stress responses.","authors":"Maria Eduarda Maia, Rafael Xavier Martins, Matheus Carvalho, Luís M Félix, Luis Fernando Marques-Santos, Davi Farias","doi":"10.1007/s10646-024-02839-8","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic pesticides are known for their toxic effects on non-target aquatic organisms. However, little is known about their effects when present in mixtures, which are closer to realistic exposure scenarios. Therefore, this study evaluates the toxicity of pesticides such as diuron, atrazine and glyphosate, individually and in combination, in zebrafish embryos, investigating their mechanisms of oxidative stress. The results revealed acute toxicity for diuron and atrazine, with LC<sub>50</sub> values of 9.6 mg/L and 53.57 mg/L for 96-h-old zebrafish, respectively. On the other hand, no effect was observed for glyphosate alone at the maximum concentration tested (100 mg/L). The mixture of diuron and atrazine showed a synergistic effect, resulting in a decrease in the LC<sub>50</sub> of each pesticide. Mixtures of diuron + glyphosate and atrazine + glyphosate were considered additive and antagonistic, respectively. All biomarkers analyzed (AChE, LDH, GST, CAT and GPx) showed significant changes. Furthermore, an increase in ROS production was observed in larvae exposed to individual and in the mixture composed of atrazine and diuron. These findings indicate that atrazine and diuron exhibit increased toxicity when combined, with their mechanisms of action-both in isolation and in mixtures-being at least partially linked to oxidative stress.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02839-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic pesticides are known for their toxic effects on non-target aquatic organisms. However, little is known about their effects when present in mixtures, which are closer to realistic exposure scenarios. Therefore, this study evaluates the toxicity of pesticides such as diuron, atrazine and glyphosate, individually and in combination, in zebrafish embryos, investigating their mechanisms of oxidative stress. The results revealed acute toxicity for diuron and atrazine, with LC50 values of 9.6 mg/L and 53.57 mg/L for 96-h-old zebrafish, respectively. On the other hand, no effect was observed for glyphosate alone at the maximum concentration tested (100 mg/L). The mixture of diuron and atrazine showed a synergistic effect, resulting in a decrease in the LC50 of each pesticide. Mixtures of diuron + glyphosate and atrazine + glyphosate were considered additive and antagonistic, respectively. All biomarkers analyzed (AChE, LDH, GST, CAT and GPx) showed significant changes. Furthermore, an increase in ROS production was observed in larvae exposed to individual and in the mixture composed of atrazine and diuron. These findings indicate that atrazine and diuron exhibit increased toxicity when combined, with their mechanisms of action-both in isolation and in mixtures-being at least partially linked to oxidative stress.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.