Lattice reconstruction in twisted bilayer graphene.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Zhongqiu Fu, Xiaofeng Zhou, Lin He
{"title":"Lattice reconstruction in twisted bilayer graphene.","authors":"Zhongqiu Fu, Xiaofeng Zhou, Lin He","doi":"10.1088/1361-648X/ad987d","DOIUrl":null,"url":null,"abstract":"<p><p>Twisted bilayer graphene (TBG) provides a tunable platform to study emergent properties that are absent in single-layer graphene by the van der Waals (vdW) interlayer interaction. The vdW interlayer interaction can also lead to notable lattice reconstruction at the interface, promoting interlayer commensurability while minimizing intralayer lattice distortion. The lattice reconstruction in TBG is a pivotal phenomenon that significantly influences the optical and electronic properties. Currently, the study of lattice reconstruction in TBG attracts much attention in condensed matter physics. In this article, we review the experimental advances in the field of TBG lattice reconstruction. The formation and atomic-scale characterization within reconstructed TBG are overviewed comprehensively. In addition, lattice reconstruction-induced electronic modulations are introduced. Moreover, coexistence and transition between reconstructed and unreconstructed phases within a critical transition regime are described. Furthermore, we discuss the prospects of tunable reconstruction within TBG and other 2D material heterostructures.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad987d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted bilayer graphene (TBG) provides a tunable platform to study emergent properties that are absent in single-layer graphene by the van der Waals (vdW) interlayer interaction. The vdW interlayer interaction can also lead to notable lattice reconstruction at the interface, promoting interlayer commensurability while minimizing intralayer lattice distortion. The lattice reconstruction in TBG is a pivotal phenomenon that significantly influences the optical and electronic properties. Currently, the study of lattice reconstruction in TBG attracts much attention in condensed matter physics. In this article, we review the experimental advances in the field of TBG lattice reconstruction. The formation and atomic-scale characterization within reconstructed TBG are overviewed comprehensively. In addition, lattice reconstruction-induced electronic modulations are introduced. Moreover, coexistence and transition between reconstructed and unreconstructed phases within a critical transition regime are described. Furthermore, we discuss the prospects of tunable reconstruction within TBG and other 2D material heterostructures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信