Closely Related Brucella Species Widely Differ in their Vegetative and Intracellular Growth.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Nazarena Wade, Diego J Comerci, Alfonso Soler-Bistué, María Inés Marchesini
{"title":"Closely Related Brucella Species Widely Differ in their Vegetative and Intracellular Growth.","authors":"Nazarena Wade, Diego J Comerci, Alfonso Soler-Bistué, María Inés Marchesini","doi":"10.1007/s00284-024-03991-4","DOIUrl":null,"url":null,"abstract":"<p><p>Growth rate is a key prokaryotic trait that allows for estimating fitness and understanding cell metabolism. While it has been well studied in model organisms, there is limited data on slow-growing bacteria. In particular, there is a lack of quantitative studies on Brucella species. This genus includes important microorganisms that are causative agents of brucellosis, one of the most widespread bacterial zoonoses, affecting several species of animals, including humans. Brucella species exhibit approximately 97% genomic similarity. Despite this, Brucella species show different host preferences, zoonotic risks, and pathogenicity. After more than one hundred years of research, numerous aspects of Brucella biology, such as in vivo and in vitro growth, remain poorly characterized. In this work, we analyzed vegetative and intracellular growth of the classical Brucella species (B. abortus, B. melitensis, B. suis, B. ovis, and B. canis). Strikingly, each species displayed distinct growth parameters in culture. Doubling time (DT) ranged from 2.7 hs<sup>-1</sup> in B. suis to 18 h<sup>-1</sup> for B. ovis. In the context of intracellular infection of J774A.1 phagocytic cells, DT was longer, but it widely varied across species, closely correlating with the growth observed in vitro. Overall, and despite high genome similarity, we also found species-specific growth parameters in the intracellular cell cycle.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"20"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03991-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Growth rate is a key prokaryotic trait that allows for estimating fitness and understanding cell metabolism. While it has been well studied in model organisms, there is limited data on slow-growing bacteria. In particular, there is a lack of quantitative studies on Brucella species. This genus includes important microorganisms that are causative agents of brucellosis, one of the most widespread bacterial zoonoses, affecting several species of animals, including humans. Brucella species exhibit approximately 97% genomic similarity. Despite this, Brucella species show different host preferences, zoonotic risks, and pathogenicity. After more than one hundred years of research, numerous aspects of Brucella biology, such as in vivo and in vitro growth, remain poorly characterized. In this work, we analyzed vegetative and intracellular growth of the classical Brucella species (B. abortus, B. melitensis, B. suis, B. ovis, and B. canis). Strikingly, each species displayed distinct growth parameters in culture. Doubling time (DT) ranged from 2.7 hs-1 in B. suis to 18 h-1 for B. ovis. In the context of intracellular infection of J774A.1 phagocytic cells, DT was longer, but it widely varied across species, closely correlating with the growth observed in vitro. Overall, and despite high genome similarity, we also found species-specific growth parameters in the intracellular cell cycle.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信